2005, Número 1
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2005; 13 (1)
Aplicación de la farmacogenómica en las acciones del hepatocito relacionadas con el metabolismo de la glucosa (2º Artículo)
Bastarrachea RA, Rosas-Guzmán J, Kent J, Cai G, Téllez-Mendoza J, Comuzzie AG
Idioma: Español
Referencias bibliográficas: 41
Paginas: 24-32
Archivo PDF: 110.23 Kb.
RESUMEN
El tratamiento farmacológico actual para la diabetes incluye la estimulación de la secreción de insulina, la inhibición de la producción endógena de glucosa y el aumento en la sensibilidad a las acciones de la insulina. Sin embargo, todo parece indicar que es necesario desarrollar terapias mucho más eficaces. Descubrimientos moleculares recientes para entender la interacción entre el metabolismo de los ácidos grasos y los carbohidratos empiezan a ofrecernos una guía muy sólida para desarrollar nuevos compuestos farmacológicos en este campo. Estos objetivos biológicos promisorios comienzan a emerger y dan lugar al desarrollo de fármacos como los antagonistas no peptídicos del receptor del glucagón y varios objetivos enzimáticos hepáticos que regulan y controlan las vías bioquímicas gluconeogénicas y glucogenolíticas. La investigación genómica del eje insulino-glucosa ha proporcionado valiosa información sobre los cambios en la expresión genética a nivel del transcriptoma en la diabesidad. Los microarreglos de cDNA y los arreglos de oligonucleótidos han facilitado la cuantificación simultánea de miles de RNA mensajeros, proporcionando un mecanismo para la evaluación profunda de estos niveles de expresión. Estas técnicas comparan el nivel de expresión del mRNA en tejidos de modelos animales y humanos delgados y obesos. Los cambios observados en esta expresión genética tisular son indicativos de la transición molecular de un estado de delgadez a un estado de obesidad, reflejando al mismo tiempo la biología celular de la patogénesis de la diabesidad. La comparación de estos cambios en varios tejidos (músculo, hígado, tejido adiposo) entre sujetos delgados y obesos nos permitirá descubrir patrones en la expresión diferencial de genes cuando un fármaco es administrado. Con estas modernas investigaciones para descubrir nuevos fármacos, las perspectivas se vislumbran con optimismo para el desarrollo de terapias que de manera segura y eficaz traten la diabetes y prevengan sus complicaciones a largo plazo.
REFERENCIAS (EN ESTE ARTÍCULO)
Astrup A, Finer N. Redefining type 2 diabetes: Diabesity or obesity dependent diabetes mellitus? Obes Rev 2000; 1(2): 57-9.
Schmidt MI, Duncan BB. Diabesity: an inflammatory metabolic condition. Clin Chem Lab Med 2003; 41(9): 1120-1130.
Lind P. Interdependence of hepatic lipid and glucose metabolism: novel pharmacological targets for diabetes. Curr Opin Investig Drugs 2004; 5(4): 395-401.
Cai G, Cole SA, Bastarrachea-Sosa RA, Maccluer JW, Blangero J, Comuzzie AG. Quantitative trait locus determining dietary macronutrient intakes is located on human chromosome 2p22. Am J Clin Nutr 2004; 80(5): 1410-1414.
Ravussin E, Bouchard C. Human genomics and obesity: finding appropriate drug targets. Eur J Pharmacol 2000; 410(2-3): 131-145.
Bastarrachea RA, Laviada-Molina H, Hernández-Escalante V, Tejero E. Medicina basada en evidencias en el desarrollo de fármacos antiobesidad: conceptos actuales y perspectivas futuras. Revista Obesidad SAOTA 2004: 15(1): on line http://www.saota.org.ar/obesinews.asp
Beckman J, Raji A, Plutzky J. Peroxisome proliferator activated receptor gamma and its activation in the treatment of insulin resistance and atherosclerosis: issues and opportunities. Curr Opin Cardiol 2003; 18(6): 479-485.
Clapham JC, Arch JR, Tadayyon M. Anti-obesity drugs: a critical review of current therapies and future opportunities. Pharmacol Ther 2001; 89(1): 81-121.
Wagman AS, Nuss JM. Current therapies and emerging targets for the treatment of diabetes. Curr Pharm Des 2001; 7(6): 417-450.
Bastarrachea RA, Tejero E, Cai G, Comuzzie AG. Farmacogenómica de la diabesidad: Corrigiendo las alteraciones glucolipometabólicas secundarias a un exceso de tejido adiposo. Rev Edocrinol Nutr 2004; 12(2): 80-89.
Vaag A. On the pathophysiology of late onset non-insulin dependent diabetes mellitus. Current controversies and new insights. Dan Med Bull 1999; 46(3): 197-234.
Klover PJ, Mooney RA. Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 2004; 36(5): 753-758.
Roden M, Perseghin G, Petersen KF, Hwang JH, Cline GW, Gerow K, Rothman DL, Shulman GI. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J Clin Invest 1996; 97(3): 642-648.
Matsuda M, Defronzo RA, Glass L, Consoli A, Giordano M, Bressler P, Delprato S. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism 2002; 51(9): 1111-1119.
Madsen P, Brand CL, Holst JJ, Knudsen B. Advances in non-peptide glucagon receptor antagonists. Curr Pharm Des 1999; 5(9): 683-691.
Djuric SW, Grihalde N, Lin CW. Glucagon receptor antagonists for the treatment of type II diabetes: current prospects. Curr Opin Investig Drugs 2002; 3(11): 1617-1623.
Brand CL, Rolin B, Jorgensen PN, Svendsen I, Kristensen JS, Holst JJ. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 1994; 37(10): 985-993.
Madsen P, Knudsen LB, Wiberg FC, Carr RD. Discovery and structure-activity relationship of the first non-peptide competitive human glucagon receptor antagonists. J Med Chem 1998; 41(26): 5150-5157.
Parker JC, McPherson RK, Andrews KM, Levy CB, Dubins JS, Chin JE, Perry PV, Hulin B, Perry DA, Inagaki T, Dekker KA, Tachikawa K, Sugie Y, Treadway JL. Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes 2000; 49(12): 2079-2086.
Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of glyconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 1992; 90(4): 1323-1327.
Rath VL, Ammirati M, Danley DE, Ekstrom JL, Gibbs EM, Hynes TR, Mathiowetz AM, McPherson RK, Olson TV, Treadway JL, Hoover DJ. Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol 2000; 7(9): 677-682.
Wright SW, Hageman DL, McClure LD, Carlo AA, Treadway JL, Mathiowetz AM, Withka JM, Bauer PH. Allosteric inhibition of fructose-1,6-biphosphatase by anilinoquinazolines. Bioorg Med Chem Lett 2001; 11(1): 17-21.
Parker JC, VanVolkenburg MA, Levy CB, Martin WH, Burk SH, Kwon Y, Giragossian C, Gant TG, Carpino PA, McPherson RK, Vestergaard P, Treadway JL. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. Diabetes 1998; 47(10): 1630-1636.
Asensio C, Muzzin P, Rohner-Jeanrenaud F. Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance. Int J Obes Relat Metab Disord 2004; 28(S4): S45-S52.
Chu JW, Matthias DF, Belanoff J, Schatzberg A, Hoffman AR, Feldman D. Successful long-term treatment of refractory Cushing’s disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab 2001; 86(8): 3568-3573.
Xu J. Metabolic Diseases Drug Discovery World Summit—SRI conference. Diabetes and obesity. 28-29 July 2003 San Diego, CA, USA. IDrugs 2003; 6(9): 850-851.
Sarabu R. Metabolic diseases drug discovery world summit. July 28-29, 2003, San Diego, CA, USA. Expert Opin Investig Drugs 2003; 12(10): 1721-1726.
Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ, Kalkhoff RK, Adams PW. Relation of body fat distribution to metabolic complications of obesity. J Clin Endocrinol Metab 1982; 54(2): 254-260.
Klein S. The case of visceral fat: argument for the defense. Clin Invest 2004; 113(11): 1530-1532.
Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 1998; 41(10): 1241-1248.
MacDougald O, Lane M. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995; 64: 345-373.
Smas CM, Sul HS. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 1993; 73: 725-734.
Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarrays. Nat Genet 1999; 21: 10-14.
Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ. High density synthetic oligonucleotide arrays. Nat Genet 1999; 21: 20-24.
Nadler S, Stoehr J, Schueler K, Tanimoto G, Yandell B, Attie, A. The expression of adipogenic genes is decreased in obesity and diabetes mellitus. Proc Natl Acad Sci USA 2000; 97: 11371-11376.
Soukas A, Cohen P, Socci N, Friedman J. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev 2000; 14: 963-980.
Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 1999; 274: 30028-30032.
Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, Vinson C, Eckhaus M, Reitman ML. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Investig 2000; 105: 271-278.
Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet 2000; 355: 1008-1010.
Danforth EJr. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat Genet 2000; 26: 13.
Chao L, Marcus-Samuels B, Mason MM, Moitra J, Vinson C, Arioglu E, Gavrilova O, Reitman, ML. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Investig 2000; 106: 1221-1228.