2003, Número 5
<< Anterior Siguiente >>
Salud Mental 2003; 26 (5)
Avances recientes en la investigación de los mecanismos celulares de acción de los disolventes de abuso.
Páez-Martínez N, López-Rubalcava C, Cruz SL
Idioma: Español
Referencias bibliográficas: 57
Paginas: 43-50
Archivo PDF: 222.08 Kb.
RESUMEN
El presente trabajo es una revisión de los hallazgos recientes acerca de los mecanismos de acción de disolventes orgánicos industriales en el nivel molecular. Se incluyen los efectos de algunos de los principales disolventes de abuso sobre los receptores a glutamato del tipo NMDA y no-NMDA, receptores a GABAA, glicina, 5-HT3, nicotínicos y muscarínicos, así como sobre el sistema de neurotransmisión mesolímbico dopaminérgico y sobre la formación de especies reactivas de oxígeno. La mayoría de los estudios de los efectos de disolventes sobre receptores ionotrópicos se obtuvo utilizando receptores recombinantes, expresados en ovocitos de ranas Xenopus laevis, y registrando las corrientes iónicas a través de ellos por medio de la técnica de fijación de voltaje de dos electrodos. Otros estudios se realizaron en cultivos neuronales. Los datos obtenidos pueden resumirse de la siguiente manera: A) El benceno, el tolueno, el m-xileno, el etil-benceno, el propil-benceno y el 1,1,1-triloroetano (TCE) inhiben los receptores NMDA; con mayor potencia a los receptores del subtipo NR1/2B que a los del subtipo NR1/2A. La inhibición es completa, reversible y dependiente de la concentración del disolvente y no se presenta para otros tipos de receptores glutamatérgicos como los no-NMDA (AMPA y kainato). B) El tolueno, el TCE y el tricloroetileno aumentan la función de los receptores GABAérgicos del subtipo GABAA, de los receptores a glicina y de los receptores a la serotonina del subtipo 5-HT3. C) El tolueno inhibe con diferente potencia a distintos subtipos de receptores colinérgicos nicotínicos; de ellos, el más sensible el α4Β2 . En cuanto a sus efectos sobre los receptores muscarínicos, el tolueno también posee actividad antagonista aunque con menor potencia que la observada para antagonizar a los receptores nicotínicos. Los estudios enfocados a los efectos del tolueno sobre canales iónicos activados por voltaje han demostrado que este disolvente inhibe las corrientes de calcio inducidas por la depolarización de células de feocromocitoma y que también actúa como antagonista de los canales cardiacos de sodio. Es importante señalar que las concentraciones en que los disolventes ejercen sus efectos in vitro son relevantes para el consumo humano en condiciones de intoxicación. En conjunto, estos estudios demuestran que los disolventes tienen un mecanismo de acción complejo similar al descrito para el etanol. Sin embargo, un estudio comparativo muestra que el tolueno es de 10 a 1000 veces más potente que el etanol. Por otra parte, la formación de radicales libres parece ser un mecanismo común a varios disolventes y se ha propuesto que pudiera cumplir un papel importante en algunos de sus efectos crónicos.
REFERENCIAS (EN ESTE ARTÍCULO)
ABBOTT A: Neurobiological perspectives on drugs of abuse. Trends Pharmacol Sci, 13:169, 1992.
AGUAYO LG, TAPIA JC, PANCETTI FC: Potentiation of the glycine-activated Cl- current by ethanol in cultured mouse spinal neurons. J Pharmacol Exp Ther, 279:1116-1122, 1996.
AISTRUP GL, MARSZALEC W, NARAHASHI T: Ethanol modulation of nicotinic acetylcholine receptor currents in cultured cortical neurons. Mol Pharmacol, 55:39-49, 1999.
ALLAN AM, HARRIS RA: Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice. Life Sci, 39:2005-2015, 1986.
ASTON-JONES GS, SIGGINS GR: Electrophysiology. En: Psychopharmacology the Fourth Generation of Progress. Bloom FE, Kupfer DJ (eds). Raven Press, Nueva York, 1995.
AYRES PH, TAYLOR DW: Solvents. En: Principles and Methods of Toxicology. Segunda Edición. Hayes W (ed). Raven Pres, Ltd., Nueva York, 1989.
BALE AS, SMOTHERS CT, WOODWARD JJ: Inhibition of neuronal nicotinic acetylcholine receptors by the abused solvent, toluene. Br J Pharmacol, 137:375-383, 2002.
BECKSTEAD MJ, WEINER JL, EGER EI, GONG DH, MIHIC SJ: Glycine and γ-aminobutyric acidA receptor function is enhanced by inhaled drugs of abuse. Mol Pharmacol, 57:1199-1205, 2000.
BENIGNUS VA, MULLER KE, BARTON CN, BITTILOFER JA: Toluene levels in blood and brain of rats during and after respiratory exposure. Toxicol App Pharmacol, 61:326- 334, 1981.
BUCK KJ, ALLAN AM, HARRIS RA: Fluidization of brain membranes by A2C does not produce anaesthesia and does not augment muscimol stimulated 36Cl- influx. Eur J Pharmacol, 160:359-367, 1989.
CARDOSO RA, BROZOWSKI SJ, CHAVEZ-NORIEGA LE, HARPOLD M, VALENZUELA CF, HARRIS RA: Effects of ethanol on recombinant human neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther, 289:774-80, 1999.
CELENTANO JJ, GIBBS TT, FARB DH: Ethanol potentiates GABA- and glycine-induced chloride current in chick spinal cord neurons. Brain Res, 455:377-380, 1988.
COVARRUBIAS M, VYAS TB, ESCOBAR L, WEI A: Alcohols inhibit a cloned potassium channel at a discrete saturable site. J Biol Chem, 270:19408-19416, 1995.
CRUZ SL, MIRSHAHI T, THOMAS B, BALSTER RL, WOODWARD JJ: Effects of the abused solvent toluene on recombinant N-Methyl-D-Aspartate and non-N-Methyl-DAspartate receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther, 286:334-340, 1998.
CRUZ SL, BALSTER RL, WOODWARD JJ: Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Br J Pharmacol, 131:1303-1308, 2000.
DINWIDDIE SH: Abuse of inhalants: a review. Addiction, 89:925-939, 1994.
DREIEM A, MYHRE O, FONNUM F: Relationship between lipophilicity of C6-C10 hydrocarbon solvents and their ROS-inducing potency in rat cerebellar granule cells. Neurotoxicology, 23:701-709, 2002.
EVANS EB, BALSTER RL: CNS. Depressant effects of volatile organic solvents. Neurosci Biobehav Rev, 15:233-241, 1991.
FLANAGAN RJ: Volatile solvent abuse. Bull Narcotics 46:49- 78, 1994.
FRANKS NP, LIEB WR: Mapping of general anaesthetic target sites provides a molecular basis for cutoff effects. Nature, 316:349-351, 1985.
GAUTHEREAU MY, CRUZ SL, ORTA-SALAZAR G, MILLAN-PEREZ-PEÑA L, SALINAS-STEFANON E: Toluene inhibits sodium currents from human cardiac sodium channels transfected into Xenopus laevis oocytes. Drug Alcohol Depend (en prensa).
GERASIMOV MR, SCHIFFER WK, MARSTELLAR D, FERRIERI R, ALEXOFF D, DEWEY SL: Toluene inhalation produces regionally specific changes in extracellular dopamine. Drug Alcohol Depend, 65:243-251, 2002.
HARRIS RA, SCHROEDER F: Ethanol and the physical properties of brain membranes: Fluorescence studies. Mol Pharmacol, 20:128-137, 1981.
JOHNSON BA, AIT-DAOUD N: Neuropharmacological treatments for alcoholism: scientific basis and clinical findings. Psychopharmacology, 149:327-344, 2000.
KING MD: Neurological sequelae of toluene abuse. Hum Toxicol, 1:281-287, 1982.
KOZEL N, SLOBODA Z, DE LA ROSA M (eds): Epidemiology of Inhalant Abuse: An International Perspective. NIDA Res. Monograph Series No. 148. Department of Health and Human Services, Rockville, 1995.
LOPREATO GF, PHELAN R, BORGHESE CM, BECKSTEAD MJ, MIHIC SJ: Inhaled drugs of abuse enhance serotonin-3 receptor function. Drug Alcohol Depend, 70:11- 15, 2003.
LOVINGER DM, WHITE G, WEIGHT FF: Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science, 243:1721-1724, 1989.
LOVINGER DM: Ethanol potentiates ion current mediated by 5-HT3 receptors on neuroblastoma cells and isolated neurons. Alcohol Alcohol Suppl, 1:181-185, 1991.
LOVINGER DM, ZHOU Q: Alcohols potentiate ion current mediated by recombinant 5-HT3RA receptors expressed in a mammalian cell line. Neuropharmacology, 33:1567-1572, 1994.
MA W, SHAFFER KM, PANCRAZIO JJ, SHUGHNESSY JO, STENGER DA, ZHANG L, BARKER JL, MARIC D: Toluene inhibits muscarinic receptor-mediated cytosolic Ca2+responses in neural precursor cells. Neurotoxicology, 23:61-68, 2002.
MACHU TK, HARRIS RA: Alcohols and anesthetics enhance the function of 5-hydroxytryptamine3 receptors expressed in Xenopus laevis oocytes. J Pharmacol Exp Ther, 271:898- 905, 1994.
MASCIA MP, MIHIC SJ, VALENZUELA CF, SCHOFIELD PR, HARRIS RA: A single amino acid determines differences in ethanol actions on strychnine-sensitive glycine receptors. Mol Pharmacol, 50:402-406, 1996.
MATTIA CJ, ADAMS JD Jr, BONDY SC: Free radical induction in the brain and liver by products of toluene catabolism. Biochem Pharmacol, 46:103-110, 1993.
MEREDITH TJ, RUPRAH M, LIDDLE A, FLANAGAN RL: Diagnosis and treatment of acute poisoning with volatile substances. Hum Toxicol, 8:277-286, 1989.
MIHIC SJ, WHITING PJ, HARRIS RA: Anaesthetic concentrations of alcohols potentiate GABAA receptormediated currents: lack of subunit specificity. Eur J Pharmacol, 268:209-214, 1994.
MIRSHAHI T, WOODWARD JJ: Ethanol sensitivity of heteromeric NMDA receptors: effects of subunit assembly, glycine and NMDAR1 Mg(2+)-insensitive mutants. Neuropharmacology, 34:347-355, 1995.
MORTON HG: Occurrence and treatment of solvent abuse in children and adolescents. Pharmacol Ther, 33:449-469, 1987.
39.MULLIKIN-KILPATRICK D, TREISTMAN SN: Electrophysiological studies on calcium channels in naive and ethanoltreated PC12 cells. Alcohol Alcohol Suppl, 2:385-389, 1993.
MYHRE O, FONNUM F: The effect o aliphatic, naphthenic, and aromatic hydrocarbons on production of reactive oxygen species and reactive nitrogen species in rat brain synaptosome fraction: the involvement of calcium, nitric oxide synthase, mitochondria, and phospholipase A. Biochem Pharmacol, 62:119-128, 2001.
National Institute on Drug Abuse (NIDA): Inhalant Abuse. En: http:www.nida.nih.gov/ResearchReports/Inhalants, 1999.
NESTLER EJ, HYMAN SE, MALENKA RC (eds): Reinforcement and addictive disorders. En: Molecular Neuropharmacology. A Foundation for Clinical Neuroscience. McGraw-Hill Co., 355-382, 2001.
OKUDA M, KUNITSUGU I, KOBAYAKAWA S, HOBARA T: Effect of 1,1,1-tricloroethane on calcium current of rat dorsal root ganglion neurons. Bull Environ Contam Toxicol, 67:476-482, 2001.
REA TM, NASH JF, ZABIK JE, BORN GS, KESSLER WV: Effects of toluene inhalation on brain biogenic amines in the rat. Toxicology, 31:143-150, 1984.
RIEGEL AC, FRENCH ED: An electrophysiological analysis of rat ventral tegmental dopamine neuronal activity during acute toluene exposure. Pharmacol Toxicol, 85:37-43, 1999.
STENGARD K, HÖGLUND G, UNGERSTEDT U: Extracellular dopamine levels within the striatum increase during inhalation exposure to toluene. A microdialysis study in awake, freely moving rats. Toxicol Lett, 71:245-255, 1994.
SUZDAK PD, SCHWARTZ RD, SKOLNICK P, PAUL SM: Ethanol stimulates gamma-aminobutyric acid receptormediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA, 83:4071-4075, 1986.
TICKU MK, LOWRIMORE P, LEHOULLIER P: Ethanol enhances GABA-induced 36Cl-influx in primary spinal cord cultured neurons. Brain Res Bull, 17:123-126, 1986.
TILLAR R, SHAFER TJ, WOODWARD JJ: Toluene inhibits voltage-sensitive calcium channels expressed in pheochromocytoma cells. Neurochem Int, 41:391-397, 2002.
WANG X, LEMOS JR, DAYANITHI G, NORDMANN JJ, TREISTMAN SN: Ethanol reduces vasopressin release by inhibiting calcium currents in nerve terminals. Brain Res, 551:339-341, 1991.
WANG X, WANG G, LEMOS JR, TREISTMAN SN: Ethanol directly modulates gating of a dihydropyridine-sensitive Ca2+ channel in neurohypophysial terminals. J Neurosci, 14:5453- 5460, 1994.
WARREN DA, BOWEN SE, JENNINGS WB, DALLAS CE, BALSTER RL: Biphasic effects of 1,1,1-trichloroethane on the locomotor activity of mice: relationship to blood and brain solvent concentrations. Toxicol Sci, 56:365-373, 2000.
WEINER JL, ZHANG L, CARLEN PL: Potentiation of GABAA-mediated synaptic current by ethanol in hippocampal CA1 neurons: possible role of protein kinase C. J Pharmacol Exp Ther, 268:1388-1395, 1994.
WESTERINK RHS, VIJVERBERG HPM: Toluene-induced, Ca2+dependent vesicular catecholamine release in rat PC12 cells. Neurosci Lett, 326:81-84, 2002.
WIRKNER K, EBERTS C, POELCHEN W, ALLGAIER C, ILLES P: Mechanism of inhibition by ethanol of NMDA and AMPA receptor channel functions in cultured rat cortical neurons. Naunyn Schmiedebergs Arch Pharmacol, 362(6):568- 76, 2000.
WOODWARD JJ: Overview of the effects of alcohol on the cerebral nervous system. Neurochem Int, 35:93-94, 1999.
YU D, ZHANG L, EISELE JL, BERTRAND D, CHANGEUX JP, WEIGHT FF: Ethanol inhibition of nicotinic acetylcholine type alpha 7 receptors involves the aminoterminal domain of the receptor. Mol Pharmacol, 50:1010- 1016, 1996.