2003, Número 2
<< Anterior Siguiente >>
Rev Mex Anest 2003; 26 (2)
Homeostasis de calcio y función cardiovascular. Implicaciones Anestésicas.
Luna OP, Serrano VX, Fernández RB, Rojas PE
Idioma: Español
Referencias bibliográficas: 103
Paginas: 87-100
Archivo PDF: 278.83 Kb.
RESUMEN
El calcio (Ca++) juega un papel muy importante en el mantenimiento y regulación de la función cardiaca normal. La fuerza de contracción miocárdica se altera por cambios en la entrada de calcio a la célula, los niveles de calcio en los sitios de almacenamiento y sensibilidad de calcio por las proteínas contráctiles. La homeostasis del ion calcio es esencial para muchos procesos biológicos, los que incluyen: el automatismo cardiaco, el acoplamiento excitación-contracción en el miocardio y en el músculo liso y esquelético, sobre la coagulación de la sangre, la conducción neuronal, la transmisión sináptica, la secreción de hormonas y la división mitótica celular. El calcio es también un importante mensajero intracelular necesario para la función celular normal y es requerido por muchas enzimas para su actividad total, y para el mantenimiento del tono vascular. El calcio juega un papel central en un gran número de acciones fisiológicas que son esenciales para la vida. Por lo tanto es muy importante que el anestesiólogo conozca la fisiopatología del calcio. En esta revisión se discutirá, la fisiología, regulación, características clínicas, causas y tratamiento de los cambios en el calcio circulante. Además el efecto del calcio sobre muchos fármacos usados durante la anestesia como los anestésicos locales, intravenosos e inhalados, los relajantes musculares, el estado acidobase, la transfusión masiva de sangre y la circulación extracorpórea. Finalmente la participación del calcio en la lesión por isquemia/reperfusión y el corazón aturdido. El anestesiólogo debe estar preparado para prevenir los cambios en la concentración del calcio en plasma y para reconocer y tratar los efectos adversos de la hipo e hipercalcemia, particularmente los efectos sobre el corazón.
REFERENCIAS (EN ESTE ARTÍCULO)
Akera T: Pharmacological agents and myocardial calcium, in Langer GA (ed): Calcium and the Heart. New York, Raven Press Ltd, 1990, p 299.
Koski G: Con: Calcium salts are not contraindicated in weaning of patients from cardiopulmonary bypass after coronary artery surgery. J Cardiothor Vasc Anesth 1988; 2: 570-572.
Olinger GN, Hottenrott C, Mulder DG, et al: Acute clinical hypocalcemic myocardial depression during rapid blood transfusion and postoperative hemodialysis: A preventable complication. J Thorac Cardiovasc Surg 1976; 72: 503-511.
Parmley WW, Wikman-Coffelt J: Myocardial hypertrophy, failure and ischemia, in Parmley WW, Chatterjee K (eds): Cardiology, Vol. 1. Philadelphia, PA, Lippincott, 1994; chap 4, pp 1-26.
Drop LJ, Geffin GA, OKeefe DD, et al: Relation between ionized calcium concentration and ventricular pump performance in dog under hemodynamically controlled conditions. Am J Cardiol 1981; 47: 1041-1051.
Shapira N, Schaff HV, White RD, Pluth JR. Hemodynamic effects of calcium chloride injection following cardiopulmonary bypass: Response to bolus injection and continuous infusion. Ann Thorac Surg 1984; 37: 133-140.
Royster RL, Butterworth JF, Prielipp RC, et al: A randomized, blinded, placebo-controlled evaluation of calcium chloride and epinephrine for inotropic support after emergence from cardiopulmonary bypass. Anesth Analg 1992; 74: 3-14.
Greenberg D. Calcium channels and calcium channels antagonists. Ann Neurol 1987; 21: 317-330.
Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels and voltage dependence of arterial smooth muscle tone. Am J Physiol Cell Physiol 1990; 259: C3-C18.
Hughes AD. Calcium channels in vascular smooth muscle cells. J Vasc Res 1994; 32: 253-370.
Ganitkevich VW, Isenberg G. Membrane potential modulates inositol 1,4,5-trisphosphate-mediated Ca2+ transients in guineapig coronary myocytes. J Physiol (Lond) 1993; 470: 35-44.
Kikuljan M, Rojas E, Catt KJ, Stojilkovic SS. Membrane potential regulates inositol 1,4,5-trisphosphate-controlled cytoplasmic Ca2+ oscillations in pituitary gonadotrophs. J Biol Chem 1994; 269: 4860-4865.
Okada Y, Yanagisawa T, Taira N. BRL 38227 (levcromakalim)-induced hyperpolarization reduces the sensitivity to Ca2+ of contractile elements in canine coronary artery. Naunyn Schmiedebergs Arch Pharmacol 1993; 347: 438-444.
Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995; 268: C799-C822.
Jackson WF. Potassium channels and regulation fo the microcirculation. Microcirculation 1998; 5: 85-90.
Large WA, Wang W. Characteristics and physiological role of the Ca(2+)-activated Cl- conductance in smooth muscle. Am J Physiol 1996; 271: C435-C454.
Yamazaki J, Duan D, Janiak R, Kuenzli K, Horowitz B, Hume JR. Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J Physiol (Lond) 1998; 507: 729-736.
Gibson A, McFadzean I, Wallace P, Wayman CP. Capacitative Ca2+ entry and the regulation of smooth muscle tone. Trends Pharmacol Sci 1998; 19: 266-269.
Berridge MJ. Elementary and global aspects of calcium signaling. J Physiol (Long) 1997; 499: 291-306.
Davis MJ, Donovitz JA, Hood JD. Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol Cell Physiol 1992; 262: C1083-C1088.
Setoguchi M, Ohya Y, Abe I, Fujishima M. Stretch-activated wholecell currents in smooth muscle cells from mesenteric resistance artery of guinea-pig. J Physiol (Lond) 1997; 501: 343-353.
Jackson WF, Blair KL. Characterization and function of Ca++- activated K+ channels in hamster cremasteric arteriolar muscle cells. Am J Physiol Heart Circ Physiol 1998; 274: H27-H34.
Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983; 305. 147-148.
Babenko AP, Aguilar-Bryan L, Bryan J. A view of sur/KIR6.X, KATP channels. Annu Rev Physiol 1998; 60: 667-687.
Ashcroft FM, Gribble FM. Correlating structure and function in ATP-sensitive K+ channels (In Process Citation). Trends Neurosci 1998; 21: 288-294.
Jackson WF, Konig A, Dambacher T, Busse R. Prostacyclin-induced vasodilation in the rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 1993; 264: H238-H243.
Vanelli G, Chang HY, Gatensby AG, Hussain SNA. Contribution of potassium channels to active hyperemia of the canine diaphragm. J Appl Physiol 1994; 76: 1098-1105.
Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev 1997; 77: 1165-1232.
Jackson WF. Arteriolar tone is determined by activity of ATPsensitive potassium channels. Am J Physiol Heart Circ Physiol. 1993; 265: H1797-H1803.
Kanaya N, Murray P, Damron DS. The differential effects of midazolam and diazepam on intracellular Ca2+ transients and contraction in adult rat ventricular myocytes. Anesth Analg 2002; 95: 1637-1644.
Marty J, Gauzit R, Lefevre P. Effects of diazepam and midazolam on baroreflex control of heart rate and on sympathetic activity in humans. Aneaesthesia and Analgesia 1986; 65: 113-119.
Rampe D, Triggle DJ. Benzodiazepine interactions at neuronal and smooth muscle Ca2+ channels. European Journal of Pharmacology 1987; 134: 189-197.
Kanaya N, Murray PA, Dmron DS. Propofol and ketamine only inhibit intracellular Ca2+ transients and concentration in rat ventricular myocytes at supraclinical concentrations. Anesthesiology 1998; 88: 781-791.
Price HL, Ohnishi ST. Effect of anesthetics on the heart. Federation Proceedings 1989; 39: 1575-1579.
Altura BM, Altura BT, Carella A. Vascular smooth muscle and general anesthetics. Federation Proceedings 1980; 39: 1584-1591.
Alper MH, Flacke W, Seifen E. Action of calcium and of anesthetic agents on the isolated mammalian heart. Federation Proceedings 1963; 22: 247.
Atlee JL, Hamann SR, Brownlee SW. Conscious state comparisons of the effects of the inhalation anesthetics and diltiazem, nifedipine, or verapamil in specialized atrioventricular conduction times in spontaneously beating dog hearts. Anesthesiology 1988; 68: 519-528.
Merin RG. Calcium channel blocking drugs and anesthetics: Is the drug interaction beneficial or detrimental. Anesthesiology 1987; 66: 111-113.
Masch E, Vonguises P, Price HL. Interaction of Ca2+ and halothane in normal myocardium. Annual A.S.A. Proceedings Abstract 1971; 111-112.
Katz B, Miledi R. The effect of calcium on acetylcholine release from motor nerve terminals. Proceedings of the Royal Society of London Series B 1965; 161-496-502.
Waud BE, Waud DR. Interaction of calcium and potassium withneuromuscular blocking agents. British Journal of Anaesthesia 1980; 52: 863-866.
Al-Mohaya S, Naguib M, Abdelatif M. Abnormal responses to muscle relaxants in a patient with primary hyperparathyroidism. Anesthesiology 1986; 65: 554-556.
Kancir CB, Petersen PH, Wandrup J. Plasma ionized calcium during paediatric anaesthesia: effects of pH and succnylcholine. Canadian Journal of Anaesthesia 1987; 34: 391-394.
Boruke DL, Rosenberg M. Changes in total serum Ca2+, Na+ and K+ with administration of succinylcholine. Anesthesiology 1978; 49: 361-363.
Smart D, Smith G, Lambert DG. (-Opioid receptor stimulation of inositol (1,4,5) triphosphate formation via a pertussis toxinsensitive G protein. Journal of Neurochemistry 1994; 62: 1009- 1014.
Smart D, Lambert DG. Desensitization of the (-opioid activation of phospholipase C in SH-SY5Y cells; the role of protein kinases C and A, and Ca2+-activated K+ currents. British Journal of Pharmacology 1995; 116: 2655-2660.
Lipp J. Possible mechanisms of morphine analgesia. Clinical Neuropharmacology 1991; 14: 131-147.
Rossner KL, Freese KJ. Bupivacaine inhibition of L-type calcium current in ventricular cardiomyocites of hamster. Anesthesiology 1997; 87: 926-934.
De la Coussaye JE, Bassoul B, Albat B. Experimental evidence in favour of role of intracellular actions of vupivacaine in myocardial depression. Anaesthesia and Analgesia 1992; 74: 698-702.
Moore EW. Ionized calcium in normal serum, ultrafiltrates, and whole blood determined by ion exchange electrodes. Journal of Clinical Investigation 1970; 49: 318-334.
Olinger GN, Hottenrott C, Mulder DG. Acute clinical hypocalcemic myocardial depression during rapid blood transfusion and postoperative haemodialysis. Journal of thoracic and Cardiovascular Surgery 1976; 72: 503-511.
Ludbrook J, Wynn V. Citrate intoxication. British Medical Journal 1958; 2: 523.
Abbott TR. Changes in serum calcium fractions and citrate concentrations during massive blood transfusions and cardiopulmonary bypass. British Journal of Anaesthesia 1983; 55: 753-760.
Kampman K, Lamberti JJ, Lyons RT. Myocardial depression following acute decrease in serum ionized calcium. Surgical Forum 1977; 28: 252-254.
Mann SW, Buckley BM, Roberts KD. Changes in plasma ionized calcium concentration during paediatric cardiopulmonary bypass surgery. Annals of clinical Biochemistry 1988; 25: 226-227.
DeHert SG, Ten Broecke PW, De Mulder PA. Effects of calcium on left ventricular function early after cardiopulmonary bypass. JCVA 1997; 11: 864-869.
Catinella FP, Cunningham JN, Strauss ED. Variations in total and ionized calcium during cardiac surgery. J Cardiovasc Surg 1983; 24: 593-602.
Robertie PG, Butterworth JF, Royster RL. Normal parathyroid hormone responses to hypocalcemia during cardiopulmonary bypass. Anesthesiology 1991; 75: 43-48.
Zaloga GP, Chernow B. Hypocalcemia in critical illness. Journal of the American Medical Association 1986; 256: 1924-1929.
Zaloga GP, Willey SC, Malcolm DS. Hypercalcemia attenuates blood pressure response to epinephrine. Journal of Pharmacological Experimental Therapy 1988; 247: 949-952.
Zaloga GP, Strickland RA, Buttrworth JF. Calcium attenuates epinephrines beta-adrenergic effects in postoperative heart surgery patients. Circulation 1990; 81: 196-200.
Butterworth JF, Zaloga GP, Pielipp RC. Calcium inhibits the cardiac stimulating properties of dobutamine but not amrinone. Chest 1992; 101: 174-180.
Prielipp R, Zaloga GP. Calcium action and general anesthesia. Adv Anesthesia 1991; 8: 241-278.
Price HL. Myocardial depression by nitrous and its reversal by Ca++. Anesthesiology 1976; 44: 211-215.
Price HL. Calcium reverses myocardial depression caused by halothane. Anesthesiology 1974; 41: 576-579.
Johns A, Leijten P, Yamamoto H. Calcium regulation in vascular smooth muscle contractility. Am J Cardiol 1987; 59: 18-23.
DeFeo TT, Morgan KG. Calcium-force relationships as detected with aequorin in two different vascular smooth muscles of the ferret. J Physiol 1985; 369: 269-282.
Stanley TH, Amaral JI, Liu WS. Peripheral vascular versus direct cardiac effects of calcium. Anesthesiology 1976; 45: 46-58.
Steinhorn DM, Sweeney MF, Layman LK. Pharmacodynamic response to ionized calcium during acute sepsis. Crit Care Med 1990; 18: 851-857.
Drop LJ, Scheidegger D. Plasma ionized calcium concentration. J Thorac Cardiovascular Surg 1980; 79: 425-431.
Scheidegger D, Drop LJ, Schellenberg JC. Role of the systemic vasculature in the hemodynamic response to changes in plasma ionized calcium. Arch Surg 1980; 115: 206-211.
Cork RC, Gallo JA, Smith R. The systemic and pulmonary vascular effects of calcium in the post-op low cardiac output state. Abstr. Anesth Analg 1988; 67: 41.
Gallagher JD, Geller EA, Moore RA. Hemodynamic effects of calcium chloride in adults with regurgitant valve lesions. Anesth Analg 1984; 63: 723-728.
Johnston WE, Robertie PG, Butterworth F. Is calcium or ephedrine superior to placebo for emergence from cardiopulmonary bypass? J Cardiothorac Vasc Anesth 1992; 6: 528-534.
Hysing ES, Chelly JE, Jacobson L. Cardiovascular effects of acute changes in extracelular ionized calcium concentration induced by citrate and CaCl2 infusions in chronically instrumented dogs, conscious and during enflurane, halothane, and isoflurane anesthesia. Anesthesiology 1990;: 72: 100-104.
Ringer S. A third contribution regarding the influence of the inorganic constituents of the blood on the ventricular contraction. J Physiol (London) 1883; 4: 222-225.
Sonnenblick EH. Force-velocity relations in mammalian heart muscle. Am J Physiol 1962; 202: 931-937.
Parmley WW, Sonnenblick EH. Relation between mechanics of contraction and relaxation in mammalian cardiac muscle. Am J Physiol 1969; 216: 1084-1091.
Mosca SM, Borelli RR, Cingolani HE, Gelpi RJ. Effects of calcium on left ventricular diastolic function in anesthetized dogs. Acta Physiol Pharmacol ther Latinoam 1991; 41: 325-336.
Pagel S, Kampine JP, Schmeling WT, Warltier DC. Reversal of volatile anesthetic-induced depression of myocardial contractility by extracelular calcium also enhances left ventricular diastolic function. Anesthesiology 1993; 78: 141-154.
Dazai Y, Kohara K, Iwata T. Cardiovascular effect of oral calcium supplementation: Echocardiographic study in patients with essential hypertension. Angiology 1996; 47: 273-280.
Prielipp RC, Hill T, Washburn D. Circulating calcium modulates adrenaline induced cyclic adenosine monophosphate production. Cardiovasc Res 1989; 23: 838-841.
Kafiluddi R, Kennedy RH, Seifen E. Effects of buffer magnesium on positive inotropic agents in guinea pig cardiac muscle. Eur J Pharmacol 1989; 165: 181-189.
Malcom DS, Holady JW, Chrnow B et al. Calcium and calcium antagonists in shock and ischaemia. In: Chernow B ed The Pharmacological Approach to the Critically III Patient, 2nd Ed Baltimore: Williams & Wilkins, 1988; 889-900.
Zemmerman AN, Daems W, Hulsmann WC et al. Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium-containing solutions (calcium paradox). Cardiovascular Research 1967; 1: 201.
Shen AC, Jennings RB. Myocardial calcium and magnesium in acute ischemic injury. American Journal of Pathology 1972; 67: 417-440.
Shen AC, Jennings RB. Kinetics of calcium accumulation in acute myocardial ischemic injury. American Journal of Pathology 1972; 67: 441-452.
Silverman HS. Mitochondria free calcium regulation in hypoxic and reoxigenation relation to cellular injury. Basic Res Cardiol 1993; 88: 483-494.
Nyler WG: The role of calcium in the ischemic myocardium. Am J Pathorl 1989; 102: 262-270.
Cheng H, Lederer MR, Lederer WJ: Calcium sparks and (Ca2+)i waves in cardiac myocites. Am J Physiol (Cell Physiol 39) 1996; 270: C148-C159.
Thandroyen FT, Belloto D, Katayama A: Subcellular electrolyte alterations during progressive hypoxia and following reoxigenation in isolated neonatal rat ventricular myocites. Circ Res 1992; 71(1): 106-119.
Hines R: Preoperative and postoperative use of inotropics in cardiac surgery. J Cardiothorac Anesth 1990; 6(suppl 5, col 4): 29-33.
Luna P: Disfunción miocárdica perioperatoria en anestesia vascular. En Luna P: anestesia Cardiovascular. 2ª edición. México. McGraw Hill-Interamericana 1997; 375-383.
Nayler WG: Basic mechanism involved in the protection of the ischemic myocardium. The role of the calcium antagonist. Drugs 1991; 42: 21-27.
Chavez E, Tellez F, Pichardo J, Milan R, Cuellar A, Carvajal K, et al: On the protection by ketorolac of the reperfusion - induced heart damage. Comp Biochem Physiol (C) 1996; 115(1): 95-100.
Karam SM, Lojeski EW, Haynes DH, Bina S: Intravenous lecithin coated microcristals of dantrolene are effective in the treatment of malignant hyperthermia; a investigation in rats, dogs and swine. Anesth Analg 1996; 82(4): 796-802.
Parness J, Palnitkar SS: Identification of dantrolene binding sites in porcine skeletal muscle sarcoplasmic reticulum. J Biol Chem 1995; 270(31): 1865-1872.
Lenzen C, Roewer N, Wappler F, Kochling A, Steinfath M: Modulation of the ryanodine induced contractures in the human skeletal muscle pre treated with dantrolene. Acta Anaesthesiol Scnd 1995; 39(3):343-346.
Benders AA, Veerkamp JH, Osterhof A, Jonge PJ, Bindels R: Ca2+ homeostasis in Brodys disease. A study in skeletal muscle and cultures muscle cells and the effects of dantrolene and verapamil. J Clin Invest 1994; 94(2):741-748.
Shan J, Benishin CG, Lewanczuk RZ, Pang PK. Mechanism of the vascular action of parathyroid hypertensive factor. J Cardiovasc Pharmacol 1994; 23: S1-8.
Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411-415.
Wollheim CB, Kikuchi M, Renold AE, Sharp GWG: The roles of intracellular and extracelular Ca++ in glucose-stimulated byphasic insulin release by rat islets. J Clin Invest 1978; 62: 451-458.
Wollheim CB, Sharp WG: Regulation of insulin release by calcium. Physiol Rev 1981; 61: 914-965.