2003, Número 6
<< Anterior Siguiente >>
salud publica mex 2003; 45 (6)
Señales físico químicas involucradas en la búsqueda de hospederos y en la inducción de picadura por mosquitos
Torres-Estrada JL, Rodriguez MH
Idioma: Español
Referencias bibliográficas: 89
Paginas: 497-505
Archivo PDF: 107.07 Kb.
RESUMEN
Las hembras de los mosquitos vectores de enfermedades utilizan señales físicas y químicas para localizar su fuente de alimentación sanguínea en hospederos vertebrados. Los mosquitos zoofílicos responden preferentemente al CO
2 y al octenol liberados en la respiración y excreciones, mientras que los mosquitos antropofílicos responden al ácido láctico y a una variedad de compuestos del sudor. Estos compuestos son modificados por microrganismos saprófitos de las glándulas sebáceas de la piel. Otros factores presentes en las viviendas contribuyen a la integración de microsistemas constituidos por olores característicos, que explican los diferentes niveles de atracción de mosquitos y la focalización de la transmisión del paludismo a una porción de casas en localidades de áreas endémicas. La identificación de estos atrayentes químicos y sus moléculas receptoras en mosquitos puede ser utilizada como complemento de nuevos métodos para la vigilancia epidemiológica, para atraer a los mosquitos a trampas de colecta o para incrementar su contacto con insecticidas usados en su control, así como en la manipulación genética para desviar las picaduras de los mosquitos hacia otros hospederos vertebrados.
REFERENCIAS (EN ESTE ARTÍCULO)
Davis EE. Introduction II. Olfactory control of mosquito behaviour. En: Bock GR, Cardew G, Ed. Olfaction in mosquitoes-host interactions. Ciba Fundation Symposium 200. Chichester: John Wiley & Sons, 1996:48-54.
Loyola EG, González-Cerón L, Rodríguez-López MH, Arredondo-Jiménez JI, Bennett S, Bown DN. Anopheles albimanus (Diptera:Culicidae) host selection patterns in three ecological areas of the coastal plains of Chiapas, southern Mexico. J Med Entomol 1993;30:18-23.
Rubio-Palis Y, Curtis CF, González C, Wirtz RA. Host choice of anopheline mosquitoes in a malaria endemic area of western Venezuela. Med Vet Entomol 1994;8:275-280.
Dixit V, Gupta AK, Kataria OM, Prasad GB. Host preference of Culex quinquefasciatus in Raipur city of Chattisgarh State. J Commun Dis 2001;33:17-22.
Ree HI, Hwang UW, Lee IY, Kim TE. Daily survival and human blood index of Anopheles sinensis, the vector species of malaria in Korea. J Am Mosq Control Assoc 2001;17:67-72.
Amerasinghe PH, Amerasinghe FP. Multiple host feeding in field populations of Anopheles culicifacies and An subpictus in Sri Lanka. Med Vet Entomol 1999;13:124-131.
Dye C. The analysis of parasite transmission by blood-sucking insects. Ann Rev Entomol 1992;37:1-19.
Panday RS. Anopheles nuneztovari and malaria transmission in Surinam. Mosq News 1977;37:728-738.
Charlwood JD, Alecrim WA. Capture-recapture studies with the South American malaria vector Anopheles darlingi Root. Ann Trop Med Parasitol 1989;83(6):569-576.
Kakitani I, Forattini OP. Paridade e desenvolvimento ovariano de Anopheles albitarsis sl em área de agro-ecossistema irrigado. Rev Saude Publ 2000;34:33-38.
Cork A. Olfactory basis of host location by mosquitoes and other haematophagous Diptera. En: Bock GR, Cardew G, Ed. Olfaction in mosquitoes-host interactions. Ciba Fundation Symposium 200. Chichester: John Wiley & Sons, 1996:71-88.
Allan SA, Day JF, Edman JD. Visual ecology of biting flies. Ann Rev Entomol 1987;32:297-316.
Bidlingmayer WL. How mosquitoes see traps: Role of visual responses. J Am Mosq Control Assoc 1994;10:272-279.
Takken W. The role of olfaction in host seeking at mosquitoes: A review. Insect Sci Appl 1991;12:287-295.
Klowden MJ. Endogenous factors regulating mosquito host-seeking behaviour: En: Bock GR, Cardew G, Ed. Olfaction in mosquitoes-host interactions. Ciba Fundation Symposium 200. Chichester: John Wiley & Sons, 1996:212-225.
Davis EE, Sokolove PG. Temperature responses of antennal receptors of the mosquito Aedes aegypti. J Comp Physiol A 1975;96:223-236.
Takken W, Knols BG. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 1999;44:131-157.
Rudolfs W. Chemetropism in mosquitoes. Bull NJ Agr Exp Stn 1922;367:4-23.
Khan AA, Maibeach HI. Cuantitation of the effect of several stimuli on landing and prosing by Aedes aegyti. J Econ Entomol 1996;59:902-905.
Hocking B. The use of attractants and repellents in vector control. Bull World Health Organ 1963;29(Suppl):121-126.
Snow WF. The affect of a reduction in expired carbon dioxide on the attractiveness of human subjects to mosquitoes. Bull Entomol Res 1970;60:43-48.
Constantini C, Gibson G, Sagnon NF, Della Torre A, Brady J. Coluzzi M. Mosquitoes responses to carbon dioxide in West African Sudan savanna village. Med Vet Entomol 1996;10:220-227.
De Jong R, Knols BG. Olfactory responses of host-seeking Anopheles gambiae ss. Giles (Diptera: Culicidae). Acta Trop 1995;59:333-335.
Takken W, Dekker T, Wijnholds YG. Odor mediated flight of Anopheles gambiae Giles sensu strictu and An. stephensi Liston in response to CO2, acetone, and 1-octen-3-ol. J Insect Behav 1997;10:395-407.
Vale GA. The response of tsetse flies (Diptera: Glossinidae) to oxodour. Bull Entomol Res 1974;64:541-588.
French FE, Kline DL. 1-octen-3-ol an effective attractant for Tabanidae. J Med Entomol 1989;26:459-461.
Anderson IH, Jaenson TGT. Nectar feeding by mosquitoes in Sweden, with special reference to Culex pipiens and Cx. torrentium. Med Vet Entomol 1987;1:59-64.
Holloway MTP, Phelps RJ. The response of Stomoxis spp (Diptera:Muscidae) to traps and artificial host odours in the field. Bull Entomol Res 1991;81:51-55.
Blackwell A, Wadhams LJ, Mordue W. Electrophysiological and behavioural studies of the biting midge, Culicoides impunctatus Goetghebuer (Diptera:Ceratopogonidae): Interactions between some plant-derived repellent compounds and a host-odour attractant, 1-octen-3-ol. Physiol Entomol 1997; 22:102-108.
Takken W, Kline DL. Carbon dioxide and 1-octen-3-ol as mosquito attractant. J Am Mosq Control Assoc 1989;5:311-316.
Kline DL. Olfactory attractants for mosquito surveillance and control: 1-octen-3-ol. J Am Mosq Control Assoc 1994;10:280-287.
Schreck CE, Smih N, Carlson DA, Price GD, Haile D, Godwin DR. A material isolated from human hands that attracts female mosquitoes. J Chem Ecol 1981;8:429-438.
Geier M, Sass H, Boeckh J. A search for components in human body odour that attract females of Aedes aegypti. En: Bock GR, Cardew G, Ed. Olfaction in mosquitoes-host interactions. Ciba Fundation Symposium 200. Chichester: John Wiley & Sons, 1996;132-148.
Rodríguez-Cotta E. Evaluación del efecto atrayente de 2-butanona, acetona y L-ácido láctico sobre la alimentación de hembras de Anopheles albimanus Wiedemann (Diptera:Culicidae) en condiciones de laboratorio (Tesis). Tuxtla Gutiérrez, Chiapas: Universidad Autónoma de Chiapas. México, 2001.
Murphy MW, Dunton RF, Perich MJ, Rowley WA. Attraction of Anopheles (Diptera: Culicidae) to volatile chemicals in Western Kenya. J Med Entomol 2001;38:242-244.
Acre F Jr, Turner RB, Gouck HK, Beroza MY, Smith N. L-lactic-acid: A mosquito attractant isolated from humans. Science 1968;161:1346-1347.
Schreck CE, Kline DL, Carlson DA. Mosquito attraction to substances from the skin of different humans. J Am Mosq Control Assoc 1990;6:406-410.
Steib BM, Geier M, Boeckh J. The effect of lactic acid on odour-related host preference of yellow fever mosquitoes. Chem Senses 2001;26:523-528.
Robertshaw D. Apocrine sweat glands. In: Goldsmith LA, Ed.Physiology, biochemistry, and molecular biology of the skin. Oxford: Oxford University Press,1991;763-775.
Sokolov VE. Mammal skin. Bekerley: University of California Press, 1982.
Allen TE, Blight J. A comparative study of the temporal patterns of cutaneus water vapour loss from some domesticated mammals, with epitrichial sweat glands. Comp Biochem Physiol 1969;31:347-363.
Jenkinson DMcE, Montgomery I, Elder HY. The ultrastructure of thesweat glands of the ox, sheep and goat during sweating and recovery. J Anat 1979;129:117-140. 43. Dekker T, Steib B, Carde RT, Geier M. L-lactic acid: A humansignifying host cue for the anthropophilic mosquito Anopheles gambiae. Med Vet Entomol 2002;16:91-98.
Bosch OJ, Geier M, Boeckh J. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem Senses 2000;25:323-330.
Dekker T, Takken W, Braks MA. Innate preference for host-odor blends modulates degree of anthropophagy of Anopheles gambiae sensu lato (Diptera: Culicidae). J Med Entomol 2001;38:868-871.
De Jong R, Knols BGJ. Selection of biting sites on man by two malaria mosquito species. Experientia 1995;51:80-84.
Dekker T, Takken W, Knols BGJ, Bouman E, Van der Laak S et al. Selection of biting sites on a man host by Anopheles gambiae sensu strictu, An. arabiensis and An quadriannulatus. Entomol Exp Appl 1998;87:295-300.
Knols BGJ, De Jong R. Limburger cheese as an attractant for the malaria mosquito Anopheles gambiae ss. Parasitol Today 1996;12:159-161.
Cork A, Park KC. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae in human sweat extracts. Med Vet Entomol 1996;10:269-276.
Knols BGJ, Van Loon JJA, Cork A, Robinson RD, Adan W et al. Behavioral and electrophysiological responses of the female malaria mosquito Anopheles gambiae (Diptera:Culicidae) to Limburger cheese volatiles. Bull Entomol Res 1997;87:151-159.
De Jong R, Knols BGJ. Selection of biting sites by mosquitoes. En: Bock GR, Cardew G, Ed. Olfaction in mosquitoes-host interactions. Ciba Fundation Symposium 200. Chichester: John Wiley & Sons, 1996:89-103.
Knols BGJ. On human odour, malaria mosquitoes, and Limburger cheese. Lancet 1996;348:1322.
Carlson DA, Smith N, Gouck HK, Godwin DR. Yellow fever mosquitoes: Compounds related to lactic acid that attract females. J Econ Entomol 1973;66:329-331.
Nicolaides N. Skin Lipids: Their biochemical uniqueness. Science 1974;186:19-26.
Puhvel SM, Reisner RM, Sakamoto M. Analysis of lipid composition of isolated human sebaceous gland homogenates after incubation with cutaneous bacteria: Thin layer chromatographic. J Invest Dermatol 1975;64:406-411.
Knols BGJ. Odours-mediated host-seeking behavior of the Afro-tropical malaria vector Anopheles gambiae Giles (Ph.D. thesis). Wageningen The Netherlands: Wageningen Agricultural University. 1996:213 .
Knols BGJ, Takken W, Charlwood D, De Jong R. Species-specific attraction of Anopheles mosquitoes (Diptera:Culicidae) to different humans in south east-Tanzania. Proc Exp Appl Entomol 1995;6:201-206.
Braks MAH, Takken W. Incubated human sweat but not fresh sweat attracts the malaria mosquito Anopheles gambiae sensu stricto. J Chem Ecol 1999;25:663-672.
Meijerink J, Braks MAH, Brack AA, Adam W, Dekker T, Posthumus MA et al. Identification of olfactory stimulants for Anopheles gambiae from human sweat samples. J Chem Ecol 2000;26:1367-1382.
Braks MAH, Cork A, Takken W. Olfactometer studies on the attraction of Anopheles gambiae sensu stricto (Diptera:Culicidae) to human sweat. Proc Exp Appl Entomol 1997;8:99-104.
Thurmon FM, Ottenstein B. Studies on the chemistry of human perspiration with especial reference to its lactic acid content. J Invest Dermatol 1952;18:333-339.
Bergeim O, Cornbleet T. The antibacterial action of the lactic acid and volatile fatty acids of sweat. Am J Med Sci 1943;206:785-792.
Smith CN, Smith N, Gouck HK, Weidhaas DE, Gilbert IH, Mayer M et al. L-lactic acid as a factor in the attraction of Aedes aegypti (Diptera: Culicidae) to human hosts. Ann Entomol Soc Am 1970;63:760-770.
Bernier UR, Kline DL, Schreck CE, Yost RA, Barnard DR. Chemical analysis of human skin emanations: Comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera:Culicidae). J Am Mosq Control Assoc 2002;18:186-195.
Healy TP, Copland MJ. Human sweat and 2-oxopentanoic acid elicit a landing response from Anopheles gambiae. Med Vet Entomol 2000;14:195-200.
Healy TP, Copland MJ, Cork A, Przyborowska A, Halket JM. Landing responses of Anopheles gambiae elicited by oxocarboxylic acids. Med Vet Entomol 2002;16:126-132.
Constantini C, Birkett MA, Gibson G, Ziesmann J, Sagnon NF, Mohammed HA et al Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components. Med Vet Entomol 2001;15:259-266.
Takken W, Knols BGJ. Odor-mediated behaviour of afrotropical malaria mosquitoes. Ann Rev Entomol 1999;44:131-157.
Koella JC, Sorensen FL, Anderson RA. The malaria parasite, Plamosdium falciparum increases the frequency of multiple feeding of its mosquitoes vector Anopheles gambiae. Proc Roy Soc London Ser B 1998;265:763-768.
Wekesa JW, Copel RS, Mwangi RW. Effect of Plasmodium falciparum on blood feeding behavior of naturally infected Anopheles mosquitoes in western Kenya. Am J Trop Med Hyg 1992;47:484-488.
Edman JD, Kale HW. Host behaviour: Its influence on the feeding success of mosquitoes. Ann Entomol Soc Am 1971;64:513-516.
Day JF, Edman JD. Malaria renders mice susceptible to mosquito feeding when gametocytes are most infective. J Parasitol 1983;69:163-170.
Day JF, Edman JD. The importance of disease induced changes in mammalian body temperature to mosquito blood feeding. Com Biochem Physiol 1984;77A:447-452.
Hurd H. Physiological and behavioural interactions between parasites and invertebrate hosts. Adv Parasitol 1990;29:271-317.
Guilles MT, Wilkes TJ. A comparison of the range of attraction of animal baits and carbon dioxide for some West African mosquitoes. Bull Entomol Res 1968;59:441-456.
Guilles MT, Wilkes TJ. The range of attraction of single baits for some West African mosquitoes. Bull Entomol Res 1970;60:225-235.
Georghiou GP, Ariaratnam V, Breeland SG. Development of resistance to carbamates and organophosphorus compounds in Anopheles albimanus in nature. Bull WHO 1972;46:551-554.
Penilla RP, Rodríguez AD, Hemingway J, Torres JL, Arredondo-Jiménez JI, Rodríguez MH. Resistance management strategies in malaria vector mosquito control. Baseline data for a large-scale field trial against Anopheles albimanus in Mexico. Med Vet Entomol 1998;12:217-233.
Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, Sharakhova MV et al. Evolution of supergene families associated with insecticide resistance. Science 2002;298:179-181.
Hemingway J, Field L, Vontas J. An overview of insecticide resistance. Science 2002;298:96-97.
Yadav RS, Ghosh SK. Radical curative efficacy of five-day regimen of primaquine for treatment of Plasmodium vivax malaria in India. J Parasitol 2002;88:1042-1044.
Fernández-Salas I, Roberts DR, Rodríguez MH, Rodríguez MC, Marina-Fernández CF. Host selection patterns of Anopheles pseudopunctipennis under insecticide spraying situations in southern Mexico. J Am Mosq Control Assoc 1993;9:375-384.
Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 2002;417:452-455.
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002;298:129-149
Carlson JO. Genetic manipulation of mosquitoes: An approach to controlling disease. Trends Biotechnol 1996;14:447-448.
Curtis CF, Townson H. Malaria: Existing methods of vector control and molecular entomology. Br Med Bull 1998;54:311-325.
James AA, Beerntsen BT, Capurro ML, Coates CJ, Coleman J, Jasinskiene N et al. Controlling malaria transmission with geneticallyengineered, Plasmodium-resistant mosquitoes: Milestones in a model system. Parassitologia 1999;41:461-471
Moreira LA, Ito J, Ghosh A, Devenport M, Zieler H, Abraham EG et al. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J Biol Chem 2002;277:40839-40843.
Hill CA, Fox AN, Pitts RJ, Kent LB, Tan PL, Chrystal MA et al. G protein-coupled receptors in Anopheles gambiae. Science 2002;298:176-178.
Fox AN, Pitts RJ, Zwiebel LJ. A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae. Chem Senses 2002;27(5):453-459.