2007, Número 4
<< Anterior
Salud Mental 2007; 30 (4)
Sincronización no-luminosa: mecanismos fisiológicos. Segunda parte
Salazar-Juárez A, Parra-Gámez L, Barbosa MS, Leff P, Antón B
Idioma: Español
Referencias bibliográficas: 131
Paginas: 69-79
Archivo PDF: 664.76 Kb.
FRAGMENTO
III) Cocaína-metanfetamina. Existe una larga historia de estudios sobre las drogas que alteran el mecanismo del reloj biológico. Por ejemplo, el tratamiento agudo o crónico con inhibidores de la monoamina oxidasa y otros antidepresivos altera el periodo y/o la fase del ritmo de actividad locomotora. Se ha reportado repetidamente que los efectos farmacológicos, fisiológicos y conductuales generados por las drogas de abuso dependen del tiempo de administración de éstas en un ciclo de 24 horas. De tal forma, los efectos de drogas de abuso como la anfetamina, el metilfenidato, la nicotina, el etanol, la morfina y la cocaína dependen de la fase circadiana en la que se administran (26). De hecho, en humanos se ha reportado que el consumo y la búsqueda de cocaína muestran un ritmo estacional y circadiano, ya que la mayoría de los sujetos la consume hacia el final del día. En sujetos experimentales, los efectos conductuales y neurofisiológicos generados por piscoestimulantes como la cocaína y la anfetamina - como la inhibición de la ingestión de alimento y el aumento en la actividad locomotora (sensibilización conductual)-, muestran perfiles circadianos en roedores (2, 34, 35). Por ejemplo, el desarrollo de la sensibilización conductual a la cocaína muestra una marcada alteración circadiana, ya que varias inyecciones de cocaína durante el día producen una fuerte sensibilización conductual. En cambio, varias administraciones durante la noche no desarrollan esta sensibilización conductual, lo que sugiere que el reloj biológico regula la sensibilidad del sujeto a la cocaína por medio de un mecanismo aún no determinado. Se ha reportado que la administración de psicoestimulantes como la metanfetamina (44), los opioides (54), el alcohol (20, 102, 103) y la cocaína (1), afectan la expresión de los genes reloj, Per1 y Per2, fuera del NSQ, principalmente en el estriado de la rata (87, 111). Esto sugiere que los genes reloj participan en la regulación de las respuestas inducidas por drogas de abuso (129, 130).
REFERENCIAS (EN ESTE ARTÍCULO)
ABARCA C, ALBRECHT U, SPANAGEL R: Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci USA. 99(13):9026-30, 2002.
AKHISAROGLU M, AHMED R, KURTUNCU M, MANEV H, UZ T: Diurnal rhythms in cocaine sensitization and in Period1 levels are common across rodent species. Pharmacol Biochem Behav, 79(1):37-42, 2004.
ALBERS HE, FERRIS CF: Neuropeptide Y: role in lightdark cycle entrainment of hamster circadian rhythms. Neurosci Lett, 50(1-3):163-8, 1984.
ALLEN CN, JIANG ZG, TESHIMA K, DARLAND T, y cols.: Orphanin-FQ/nociceptin (OFQ/N) modulates the activity of suprachiasmatic nucleus neurons. J Neurosci, 19(6):2152-60, 1999.
ANDRETIC R, CHANEY S, HIRSH J: Requirement of circadian genes for cocaine sensitization in Drosophila. Science, 285(5430):1066-8, 1999.
ANDRETIC R, HIRSH J: Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc Natl Acad Sci USA, 97(4):1873-8, 2000.
ANTLE MC, MARCHANT EG, NIEL L, MISTLBERGER RE: Serotonin antagonists do not attenuate activity-induced phase shifts of circadian rhythms in the Syrian hamster. Brain Res, 813(1):139-49, 1998.
ANTLE MC, GLASS JD, MISTLBERGER RE: 5-HT(1A) autoreceptor antagonist-induced 5-HT release in the hamster suprachiasmatic nuclei: effects on circadian clock resetting. Neurosci Lett, 282(1-2):97-100, 2000.
ANTLE MC, STEEN NM, MISTLBERGER RE: Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroreport, 12(13):2901-5, 2001.
ANTLE MC, OGILVIE MD, PICKARD GE, MISTLBERGER RE: Response of the mouse circadian system to serotonin 1A/2/7 agonists in vivo: surprisingly little. J Biol Rhythms, 18(2):145-58, 2003.
BIELLO SM, MROSOVSKY N: Circadian phase-shifts induced by chlordiazepoxide without increased locomotor activity. Brain Res, 622(1-2):58-62, 1993.
BIELLO SM, MROSOVSKY N: Blocking the phase-shifting effect of neuropeptide Y with light. Proc Biol Sci, 259(1355):179-87, 1995.
BIELLO SM: Enhanced photic phase shifting after treatment with antiserum to neuropeptide Y. Brain Res, 673(1):25-9, 1995.
BIELLO SM, MROSOVSKY N: Phase response curves to neuropeptide Y in wildtype and tau mutant hamsters. J Biol Rhythms, 11(1):27-34, 1996.
BOBRZYNSKA KJ, GODFREY MH, MROSOVSKY N: Serotonergic stimulation and nonphotic phase-shifting in hamsters. Physiol Behav, 59(2):221-30, 1996.
BOBRZYNSKA KJ, VRANG N, MROSOVSKY N: Persistence of nonphotic phase shifts in hamsters after serotonin depletion in the suprachiasmatic nucleus. Brain Res, 741(1-2):205-14, 1996.
BYKU M, GANNON RL: Opioid induced non-photic phase shifts of hamster circadian activity rhythms. Brain Res, 873(2):189-96, 2000.
BYKU M, GANNON RL: SNC 80, a delta-opioid agonist, elicits phase advances in hamster circadian activity rhythms. Neuroreport, 11(7):1449-52, 2000.
CHALLET E, TAKAHASHI JS, TUREK FW: Nonphotic phase-shifting in clock mutant mice. Brain Res, 859(2):398-403, 2000.
CHAO J, NESTLER EJ: Clock reset for alcoholism. Nat Med, 11(1):23-4, 2005.
COLBRON S, JONES M, BIELLO SM: MDMA alters the response of the circadian clock to a photic and non-photic stimulus. Brain Res, 956(1):45-52, 2002.
CUTRERA RA, OUAROUR A, PEVET P: Effects of the 5- HT1a receptor agonist 8-OH-DPAT and other non-photic stimuli on the circadian rhythm of wheel-running activity in hamsters under different constant conditions. Neurosci Lett, 172(1-2):27-30, 1994.
CUTRERA RA, KALSBEEK A, PEVET P: Specific destruction of the serotonergic afferents to the suprachiasmatic nuclei prevents triazolam-induced phase advances of hamster activity rhythms. Behav Brain Res, 62(1):21-8, 1994.
DAVIS FC, MANNION J: Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. Am J Physiol, 255(3 Pt 2):R439-48, 1988.
DAVIS FC, GORSKI RA: Development of hamster circadian rhythms: role of the maternal suprachiasmatic nucleus. J Comp Physiol [A], 162(5):601-10, 1988.
DAWSON D, ARMSTRONG SM: Chronobiotics-drugs that shift rhythms. Pharmacol Ther, 69(1):15-36, 1996.
EDELSTEIN K, AMIR S: Non-photic manipulations induce expression of Fos protein in the suprachiasmatic nucleus and intergeniculate leaflet in the rat. Brain Res, 690(2):254-8, 1995.
EDELSTEIN K, DE LA IGLESIA HO, SCHWARTZ WJ, MROSOVSKY N: Behavioral arousal blocks light-induced phase advances in locomotor rhythmicity but not light-induced Per1 and Fos expression in the hamster suprachiasmatic nucleus. Neuroscience, 118(1):253-61, 2003.
EDGAR DM, DEMENT WC: Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am J Physiol, 261(4 Pt 2):R928-33, 1991.
EDGAR DM, MILLER JD, PROSSER RA, DEAN RR, DEMENT WC: Serotonin and the mammalian circadian system: II. Phase-shifting rat behavioral rhythms with serotonergic agonists. J Biol Rhythms, 8(1):17-31, 1993.
FUKUHARA C, BREWER JM, DIRDEN JC, BITTMAN EL y cols.: Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci Lett, 314(3):119-22, 2001.
GAMBLE KL, NOVAK CM, PAUL KN, ALBERS HE: Tetrodotoxin blocks the circadian effects of NMDA during the day but not at night. Neuroreport, 14(4):641-4, 2003.
GARDANI M, BLANCE RN, BIELLO SM: MDMA alters the response of the mammalian circadian clock in hamsters: effects on re-entrainment and triazolam-induced phase shifts. Brain Res, 1046(1-2):105-15, 2005.
GAYTAN O, LEWIS C, SWANN A, DAFNY N: Diurnal differences in amphetamine sensitization. Eur J Pharmacol, 374(1):1-9, 1999.
GAYTAN O, YANG P, SWANN A, DAFNY N: Diurnal differences in sensitization to methylphenidate. Brain Res, 864(1):24-39, 2000.
GLASS JD, RANDOLPH WW, FERREIRA SA, REA MA y cols.: Diurnal variation in 5-hydroxyindole-acetic acid output in the suprachiasmatic region of the Siberian hamster assessed by in vivo microdialysis: evidence for nocturnal activation of serotonin release. Neuroendocrinology, 56(4):582-90, 1992.
GLASS JD, TARDIF SD, CLEMENTS R, MROSOVSKY N: Photic and nonphotic circadian phase resetting in a diurnal primate, the common marmoset. Am J Physiol, 280(1):R191-7, 2001.
GOMPF HS, MOLDAVAN MG, IRWIN RP, ALLEN CN: Nociceptin/orphanin FQ (N/OFQ) inhibits excitatory and inhibitory synaptic signaling in the suprachiasmatic nucleus (SCN). Neuroscience, 132(4):955-65, 2005.
HAMADA T, ANTLE MC, SILVER R: The role of Period1 in non-photic resetting of the hamster circadian pacemaker in the suprachiasmatic nucleus. Neurosci Lett, 362(2):87-90, 2004.
HASTINGS MH, MEAD SM, VINDLACHERUVU RR, EBLING FJ y cols.: Non-photic phase shifting of the circadian activity rhythm of Syrian hamsters: the relative potency of arousal and melatonin. Brain Res, 591(1):20-6, 1992.
HASTINGS MH, DUFFIELD GE, EBLING FJ, KIDD A y cols.: Non-photic signalling in the suprachiasmatic nucleus. Biol Cell, 89(8):495-503, 1997.
HORIKAWA K, YOKOTA S, FUJI K, AKIYAMA M y cols.: Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci, 20(15):5867-73, 2000.
HORIKAWA K, SHIBATA S: Phase-resetting response to (+)8-OH-DPAT, a serotonin 1A/7 receptor agonist, in the mouse in vivo. Neurosci Lett, 368(2):130-4, 2004.
IIJIMA M, NIKAIDO T, AKIYAMA M, MORIYA T, SHIBATA S: Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur J Neurosci, 16(5):921-9, 2002.
JANIK D, MROSOVSKY N: Gene expression in the geniculate induced by a nonphotic circadian phase shifting stimulus. Neuroreport, 3(7):575-8, 1992.
JANIK D, GODFREY M, MROSOVSKY N: Phase angle changes of photically entrained circadian rhythms following a single nonphotic stimulus. Physiol Behav, 55(1):103-7, 1994.
JANIK D, MROSOVSKY N: Intergeniculate leaflet lesions and behaviorally-induced shifts of circadian rhythms. Brain Res, 651(1-2):174-82, 1994.
JANIK D, MIKKELSEN JD, MROSOVSKY N: Cellular colocalization of Fos and neuropeptide Y in the intergeniculate leaflet after nonphotic phase-shifting events. Brain Res, 698(1- 2):137-45, 1995.
JOHNSON RF, SMALE L, MOORE RY, MORIN LP: Lateral geniculate lesions block circadian phase-shift responses to a benzodiazepine. Proc Natl Acad Sci USA, 85(14):5301-4, 1988.
JOHNSON RF, MOORE RY, MORIN LP: Lateral geniculate lesions alter circadian activity rhythms in the hamster. Brain Res Bull, 22(2):411-22, 1989.
KNOCH ME, GOBES SM, PAVLOVSKA I, SU C y cols.: Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters. Eur J Neurosci, 19(10):2779-90, 2004.
LALL GS, BIELLO SM: Attenuation of phase shifts to light by activity or neuropeptide Y: a time course study. Brain Res, 957(1):109-16, 2002.
LEWANDOWSKI MH, USAREK A: Effects of intergeniculate leaflet lesions on circadian rhythms in the mouse. Behav Brain Res, 128(1):13-7, 2002.
LIU Y, WANG Y, WAN C, ZHOU W y cols.: The role of mPer1 in morphine dependence in mice. Neuroscience, 130(2):383-8, 2005.
MARCHANT EG, MISTLBERGER RE: Morphine phaseshifts circadian rhythms in mice: role of behavioural activation. Neuroreport, 7(1):209-12, 1995.
MARCHANT EG, MISTLBERGER RE: Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav, 60(2):657-63, 1996.
MARCHANT EG, WATSON NV, MISTLBERGER RE: Both neuropeptide Y and serotonin are necessary for entrainment of circadian rhythms in mice by daily treadmill running schedules. J Neurosci, 17(20):7974-87, 1997.
MARCHANT EG, MISTLBERGER RE. Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/ 6j mice. Brain Res, 765(2):273-82, 1997.
MAYWOOD ES, SMITH E, HALL SJ, HASTINGS MH: A thalamic contribution to arousal-induced, non-photic entrainment of the circadian clock of the Syrian hamster. Eur J Neurosci, 9(8):1739-47, 1997.
MAYWOOD ES, MROSOVSKY N, FIELD MD, HASTINGS MH: Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci USA, 96(26):15211-6, 1999.
MAYWOOD ES, MROSOVSKY N: A molecular explanation of interactions between photic and non-photic circadian clock-resetting stimuli. Brain Res Gene Expr Patterns, 1(1):27-31, 2001.
MAYWOOD ES, OKAMURA H, HASTINGS MH: Opposing actions of neuropeptide Y and light on the expression of circadian clock genes in the mouse suprachiasmatic nuclei. Eur J Neurosci, 15(1):216-20, 2002.
MCCLUNG CA, SIDIROPOULOU K, VITATERNA M, TAKAHASHI JS y cols.: Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc Natl Acad Sci USA, 102(26):9377-81, 2005.
MEAD S, EBLING FJ, MAYWOOD ES, HUMBY T y cols.: A nonphotic stimulus causes instantaneous phase advances of the light-entrainable circadian oscillator of the Syrian hamster but does not induce the expression of c-fos in the suprachiasmatic nuclei. J Neurosci, 12(7):2516-22, 1992.
MEIJER JH, RUIJS AC, ALBUS H, VAN DE GEEST B, DUINDAM H y cols.: Fentanyl, a upsilon-opioid receptor agonist, phase shifts the hamster circadian pacemaker. Brain Res, 868(1):135-40, 2000.
MEYER EL, HARRINGTON ME, RAHMANI T: A phaseresponse curve to the benzodiazepine chlordiazepoxide and the effect of geniculo-hypothalamic tract ablation. Physiol Behav, 53(2):237-43, 1993.
MEYER-BERNSTEIN EL, MORIN LP: Destruction of serotonergic neurons in the median raphe nucleus blocks circadian rhythm phase shifts to triazolam but not to novel wheel access. J Biol Rhythms, 13(6):494-505, 1998.
MICHELS KM, MORIN LP, MOORE RY: GABAA/ benzodiazepine receptor localization in the circadian timing system. Brain Res, 531(1-2):16-24, 1990.
MIDDLETON B, ARENDT J, STONE BM: Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time. J Sleep Res, 5(2):69-76, 1996.
MIRMIRAN M, SWAAB DF, KOK JH, HOFMAN MA y cols.: Circadian rhythms and the suprachiasmatic nucleus in perinatal development, aging and Alzheimer’s disease. Prog Brain Res, 93:151-62, 1992.
MISTLBERGER RE, LANDRY GJ, MARCHANT EG: Sleep deprivation can attenuate light-induced phase shifts of circadian rhythms in hamsters. Neurosci Lett, 238(1-2):5-8, 1997.
MISTLBERGER RE, BOSSERT JM, HOLMES MM, MARCHANT EG: Serotonin and feedback effects of behavioral activity on circadian rhythms in mice. Behav Brain Res, 96(1-2):93-9, 1998.
MISTLBERGER RE, HOLMES MM: Morphine-induced activity attenuates phase shifts to light in C57BL/6J mice. Brain Res, 829(1-2):113-9, 1999.
MISTLBERGER RE, BELCOURT J, ANTLE MC: Circadian clock resetting by sleep deprivation without exercise in Syrian hamsters: dark pulses revisited. J Biol Rhythms, 17(3):227-37, 2002.
MISTLBERGER RE, ANTLE MC, WEBB IC, JONES M y cols.: Circadian clock resetting by arousal in Syrian hamsters: the role of stress and activity. Am J Physiol, 285(4):R917-25, 2003.
MISTLBERGER RE, SKENE DJ: Nonphotic entrainment in humans? J Biol Rhythms, 20(4):339-52, 2005.
MOORE RY, SPEH JC: GABA is the principal neurotransmitter of the circadian system. Neurosci Lett, 150(1):112-6, 1993.
MORIN LP, BLANCHARD JH: Neuromodulator content of hamster intergeniculate leaflet neurons and their projection to the suprachiasmatic nucleus or visual midbrain. J Comp Neurol, 437(1):79-90, 2001.
MROSOVSKY N, SALMON PA: A behavioural method for accelerating re-entrainment of rhythms to new light-dark cycles. Nature, 330(6146):372-3, 1987.
MROSOVSKY N, REEBS SG, HONRADO GI, SALMON PA: Behavioural entrainment of circadian rhythms. Experientia, 45(8):696-702, 1989.
MROSOVSKY N, SALMON PA: Triazolam and phase-shifting acceleration re-evaluated. Chronobiol Int, 7(1):35-41, 1990.
MROSOVSKY N: Double-pulse experiments with nonphotic and photic phase-shifting stimuli. J Biol Rhythms, 6(2):167-79, 1991.
MROSOVSKY N, SALMON PA, MENAKER M, RALPH MR: Nonphotic phase shifting in hamster clock mutants. J Biol Rhythms, 7(1):41-9, 1992.
MROSOVSKY N: Tau changes after single nonphotic events. Chronobiol Int, 10(4):271-6, 1993.
MROSOVSKY N: A non-photic gateway to the circadian clock of hamsters. Ciba Found Symp, 183:154-67, 1995.
MROSOVSKY N: Locomotor activity and non-photic influences on circadian clocks. Biol Rev Camb Philos Soc, 71(3):343-72, 1996.
NIKAIDO T, AKIYAMA M, MORIYA T, SHIBATA S: Sensitized increase of period gene expression in the mouse caudate/putamen caused by repeated injection of methamphetamine. Mol Pharmacol, 59(4):894-900, 2001.
PENEV PD, TUREK FW, ZEE PC: A serotonin neurotoxin attenuates the phase-shifting effects of triazolam on the circadian clock in hamsters. Brain Res, 669(2):207-16, 1995.
PICKARD GE, WEBER ET, SCOTT PA, RIBERDY AF, REA MA: 5HT1B receptor agonists inhibit light-induced phase shifts of behavioral circadian rhythms and expression of the immediate-early gene c-fos in the suprachiasmatic nucleus. J Neurosci, 16(24):8208-20, 1996.
PROSSER RA, MILLER JD, HELLER HC: A serotonin agonist phase-shifts the circadian clock in the suprachiasmatic nuclei in vitro. Brain Res, 534(1-2):336-9, 1990.
REDMAN J, ARMSTRONG S, NG KT: Free-running activity rhythms in the rat: entrainment by melatonin. Science, 219(4588):1089-91, 1983.
REPPERT SM, SCHWARTZ WJ: Maternal coordination of the fetal biological clock in utero. Science, 220(4600):969-71, 1983.
REPPERT SM, SCHWARTZ WJ: Functional activity of the suprachiasmatic nuclei in the fetal primate. Neurosci Lett, 46(2):145-9, 1984.
REPPERT SM, SCHWARTZ WJ: The suprachiasmatic nuclei of the fetal rat: characterization of a functional circadian clock using 14C-labeled deoxyglucose. J Neurosci, 4(7):1677-82, 1984.
REPPERT SM, SCHWARTZ WJ: Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J Neurosci, 6(9):2724-9, 1986.
REPPERT SM, SCHWARTZ WJ: Maternal endocrine extirpations do not abolish maternal coordination of the fetal circadian clock. Endocrinology, 119(4):1763-7, 1986.
REPPERT SM: Pre-natal development of a hypothalamic biological clock. Prog Brain Res, 93:119-31, 1992.
SHIBATA S, MOORE RY: Development of a fetal circadian rhythm after disruption of the maternal circadian system. Brain Res, 469(1-2):313-7, 1988.
SHIMODA K, HANADA K, YAMADA N, TAKAHASHI K: Restricted access to natural mother shifted endogenous rhythm of rat pups. Brain Dev, 8(4):366-72, 1986.
100.SINCLAIR SV, MISTLBERGER RE. Scheduled activity reorganizes circadian phase of Syrian hamsters under full and skeleton photoperiods. Behav Brain Res, 87(2):127-37, 1997.
101.SMITH RD, TUREK FW, TAKAHASHI JS: Two families of phase-response curves characterize the resetting of the hamster circadian clock. Am J Physiol, 262(6 Pt 2):R1149-53, 1992.
102.SPANAGEL R, PENDYALA G, ABARCA C, ZGHOUL T y cols.: The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med, 11(1):35-42, 2005.
103.SPANAGEL R, ROSENWASSER AM, SCHUMANN G, SARKAR DK: Alcohol consumption and the body’s biological clock. Alcohol Clin Exp Res, 29(8):1550-7, 2005.
104.SUGINO T, SHIMAZOE T, IKEDA M, WATANABE S: Role of nociceptin and opioid receptor like 1 on entrainment function in the rat suprachiasmatic nucleus. Neuroscience, 137(2):537-44, 2006.
105.SUMOVA A, EBLING FJ, MAYWOOD ES, HERBERT J, HASTINGS MH: Non-photic circadian entrainment in the Syrian hamster is not associated with phosphorylation of the transcriptional regulator CREB within the suprachiasmatic nucleus, but is associated with adrenocortical activation. Neuroendocrinology, 59(6):579-89, 1994.
106.SUMOVA A, MAYWOOD ES, SELVAGE D, EBLING FJ, HASTINGS MH: Serotonergic antagonists impair arousalinduced phase shifts of the circadian system of the syrian hamster. Brain Res, 709(1):88-96,. 1996.
107.TESHIMA K, MINOGUCHI M, TOUNAI S, ASHIMORI A y cols.: Nonphotic entrainment of the circadian body temperature rhythm by the selective ORL1 receptor agonist W-212393 in rats. Br J Pharmacol, 146(1):33-40, 2005.
108.TIERNO A, FIORE P, GANNON RL: Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms. Brain Res, 937(1-2):66-73, 2002.
109.TOMINAGA K, SHIBATA S, HAMADA T, WATANABE S: GABAA receptor agonist muscimol can reset the phase of neural activity rhythm in the rat suprachiasmatic nucleus in vitro. Neurosci Lett, 166(1):81-4, 1994.
110.TUREK FW, VAN REETH O: Altering the mammalian circadian clock with the short-acting benzodiazepine, triazolam. Trends Neurosci, 11(12):535-41, 1988.
111.UZ T, AHMED R, AKHISAROGLU M, KURTUNCU M y cols.: Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience, 134(4):1309-16, 2005.
112.VAN CAUTER E, TUREK FW: Depression: a disorder of timekeeping? Perspect Biol Med, 29(4):510-9, 1986.
113.VAN REETH O, LOSEE-OLSON S, TUREK FW: Phase shifts in the circadian activity rhythm induced by triazolam are not mediated by the eyes or the pineal gland in the hamster. Neurosci Lett, 80(2):185-90, 1987.
114.VAN REETH O, TUREK FW: Administering triazolam on a circadian basis entrains the activity rhythm of hamsters. Am J Physiol, 256(3 Pt 2):R639-45, 1989.
115.VAN REETH O, TUREK FW: Daily injections of triazolam induce long-term changes in hamster circadian period. Am J Physiol, 259(3 Pt 2):R514-20, 1990.
116.VISWANATHAN N, CHANDRASHEKARAN MK: Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature, 317(6037):530-1, 1985.
117.VISWANATHAN N, WEAVER DR, REPPERT SM, DAVIS FC: Entrainment of the fetal hamster circadian pacemaker by prenatal injections of the dopamine agonist SKF 38393. J Neurosci, 14(9):5393-8, 1994.
118.VISWANATHAN N, DAVIS FC: Single prenatal injections of melatonin or the D1-dopamine receptor agonist SKF 38393 to pregnant hamsters sets the offsprings’ circadian rhythms to phases 180 degrees apart. J Comp Physiol [A], 180(4):339-46, 1997.
119.WEAVER DR, REPPERT SM: Periodic feeding of SCN-lesioned pregnant rats entrains the fetal biological clock. Dev Brain Res, 46(2):291-6, 1989.
120.WEAVER DR, REPPERT SM: Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Mol Brain Res, 33(1):136-48, 1995.
121.WEAVER DR, ROCA AL, REPPERT SM: c-fos and jun-B mRNAs are transiently expressed in fetal rodent suprachiasmatic nucleus following dopaminergic stimulation. Dev Brain Res, 85(2):293-7, 1995.
122.WEBER ET, REA MA: Neuropeptide Y blocks light-induced phase advances but not delays of the circadian activity rhythm in hamsters. Neurosci Lett, 231(3):159-62, 1997.
123.WEISGERBER D, REDLIN U, MROSOVSKY N: Lengthening of circadian period in hamsters by novelty-induced wheel running. Physiol Behav, 62(4):759-65, 1997.
124.WICKLAND C, TUREK FW: Lesions of the thalamic intergeniculate leaflet block activity-induced phase shifts in the circadian activity rhythm of the golden hamster. Brain Res, 660(2):293-300, 1994.
125.YANNIELLI PC, MCKINLEY BREWER J, HARRINGTON ME: Is novel wheel inhibition of per1 and per2 expression linked to phase shift occurrence? Neuroscience, 112(3):677- 85, 2002.
126.YANNIELLI P, HARRINGTON ME: Let there be «more “light: enhancement of light actions on the circadian system through non-photic pathways. Prog Neurobiol, 74(1):59-76, 2004.
127.YOKOTA SI, HORIKAWA K, AKIYAMA M, MORIYA T y cols.: Inhibitory action of brotizolam on circadian and light- induced per1 and per2 expression in the hamster suprachiasmatic nucleus. Br J Pharmacol, 131(8):1739-47, 2000.
128.YOKOTA S, MORIYA T, SHIBATA S: Inhibitory action of 5-HT1A agonist MKC-242 on triazolam-induced phase advances in hamster circadian activity rhythms. J Pharmacol Sci, 98(1):103-6, 2005.
129.YUFEROV V, BART G, KREEK MJ: Clock reset for alcoholism. Nat Med, 11(1):23-4, 2005.
130.YUFEROV V, BUTELMAN ER, KREEK MJ: Biological clock: biological clocks may modulate drug addiction. Eur J Hum Genet, 13(10):1101-3, 2005.
131.ZHANG Y, VAN REETH O, ZEE PC, TAKAHASHI JS, TUREK FW: Fos protein expression in the circadian clock is not associated with phase shifts induced by a nonphotic stimulus, triazolam. Neurosci Lett, 164(1-2):203-8, 1993.