2007, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2007; 143 (5)
Esclerosis temporal mesial en epilepsia del lóbulo temporal: evaluación cuantitativa con resonancia magnética 3.0 Tesla
Roldán-Valadez E, Corona-Cedillo R, Cosme-Labarthe J, Martínez-López M
Idioma: Español
Referencias bibliográficas: 23
Paginas: 433-436
Archivo PDF: 510.28 Kb.
RESUMEN
Se estima que hasta 70% de los pacientes con epilepsia del lóbulo temporal tienen una alteración morfológica del hipocampo, la esclerosis hipocampal mesial, también llamada esclerosis temporal mesial que se caracteriza por pérdida de neuronas y gliosis responsable del foco epiléptico. En la resonancia magnética convencional la esclerosis temporal mesial se define por la presencia de una atrofia del hipocampo más una señal hiperintensa en las secuencias con tiempo de repetición largo específicas para el hipocampo (FLAIR y T2 coronal). La resonancia magnética 3.0 Tesla permite actualmente estudiar la anatomía y fisiología cerebral o cambiar el mecanismo de adquisición de la imagen y los parámetros posproceso. La volumetría proporciona actualmente un volumen preciso y junto con la espectroscopia hace posible una evaluación cuantitativa del hipocampo. Ambas técnicas se suman a los hallazgos de la resonancia magnética convencional para identificar las lesiones cerebrales que participan en un foco epiléptico. Presentamos un caso de esclerosis temporal mesial con análisis cuantitativo del hipocampo y una breve revisión de la literatura.
REFERENCIAS (EN ESTE ARTÍCULO)
Raybaud CA, Guye M, Le Fur Y, et al. 1HMRSI and depth electrodes recording correlates in temporal lobe epilepsy. 39th Annual meeting of the American Society of Neuroradiology; 2001.
Achten E, Boon P, Van De Kerckhove T, Caemaert J, De Reuck J, Kunnen M. Value of single-voxel proton MR spectroscopy in temporal lobe epilepsy. AJNR Am J Neuroradiol 1997;18:1131-1139.
Spencer SS, McCarthy G, Spencer DD. Diagnosis of medial temporal lobe seizure onset: relative specificity and sensitivity of quantitative MRI. Neurology 1993;43:2117-2124.
Grossman RI, Yousem DM. Congenital disorders of the brain and spine. In: Grossman RI, Yousem DM, eds. Neuroradiology. The requisites. 2nd ed. Philadelhpia, PA: Mosby; 2003. pp. 447-449.
Jack CR, Jr. MRI-based hippocampal volume measurements in epilepsy. Epilepsia 1994;35 Suppl 6:S21-S29.
Wu WC, Huang CC, Chung HW, Liou M, Hsueh CJ, Lee CS, et al. Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. AJNR Am J Neuroradiol 2005;26:1270-1275.
Brandao LA, Domingues RC. Epilepsy. In: Brandao LA, Domingues RC, eds. MR spectroscopy of the brain. Philadelphia, PA: Lippincott Williams & Wilkins; 2004. pp. 80-90.
Thompson JE, Castillo M, Kwock L, Walters B, Beach R. Usefulness of proton MR spectroscopy in the evaluation of temporal lobe epilepsy. AJR Am J Roentgenol 1998;170:771-776.
Castillo M. Imaging intractable epilepsy: how many tests are enough? AJNR Am J Neuroradiol 1999;20:534-535.
Althagafi MYA, Bakhsh EAK. Value of 3D SPGR in epilepsy neuroimaging. 39th Annual Meeting of the American Society of Neuroradiology. Boston, MA; 2001.
Vezina G. MR Pediatric imaging. 39th Annual Meeting of the American Society of Neuroradiology. Boston, MA; 1999.
Duvernoy H. Brain Anatomy. In: Kuzniecky R, Jackson GD, eds. Magnetic resonance in epilepsy. London, UK: Elsevier Academic Press; 2005. pp. 29-32.
Cook MJ, Fish DR, Shorvon SD, Straughan K, Stevens JM. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 1992;115:1001-1015.
Kuzniecky R, Hugg JW, Hetherington H, Butterworth E, Bilir E, Faught E, et al. Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 1998;51:66-71.
Van Paesschen W, Connelly A, Johnson CL, Duncan JS. The amygdala and intractable temporal lobe epilepsy: a quantitative magnetic resonance imaging study. Neurology 1996;47:1021-1031.
Wang L, Swank JS, Glick IE, Gado MH, Miller MI, Morris JC, et al. Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 2003;20:667-682.
Szeszko PR, Goldberg E, Gunduz-Bruce H, Ashtari M, Robinson D, Malhotra AK, et al. Smaller anterior hippocampal formation volume in antipsychotic- naive patients with first-episode schizophrenia. Am J Psychiatry 2003;160:2190-2197.
Isaacs EB, Vargha-Khadem F, Watkins KE, Lucas A, Mishkin M, Gadian DG. Developmental amnesia and its relationship to degree of hippocampal atrophy. Proc Natl Acad Sci USA 2003;100:13060-13063.
Kobayashi E, Li LM, Lopes-Cendes I, Cendes F. Magnetic resonance imaging evidence of hippocampal sclerosis in asymptomatic, first-degree relatives of patients with familial mesial temporal lobe epilepsy. Arch Neurol 2002;59(12):1891-1894.
Hetherington H, Petroff OA, Jackson GD, Kuzniecky RI, Briellmann RS, Wellard RM. Magnetic Resonance Spectroscopy. In: Kuzniecky R, Jackson GD, eds. Magnetic Resonance in Epilepsy. London, UK: Elsevier Academic Press; 2005. pp. 333-383.
Achten E. Aspects of proton MR spectroscopy in the seizure patient. Neuroimaging Clin N Am 1998;8:849-862.
Mamourian AC, Rodichok L, Towfighi J. The asymmetric mamillary body: association with medial temporal lobe disease demonstrated with MR. AJNR Am J Neuroradiol 1995;16:517-522.
Bronen R. MR of mesial temporal sclerosis: how much is enough? AJNR Am J Neuroradiol 1998;19:15-18