2007, Número 2
<< Anterior Siguiente >>
Rev Mex Ing Biomed 2007; 28 (2)
Comportamiento del tejido periodontal en modelo bidimensional de EF de un molar sometido a carga ortodóntica
O´Connor BJ, Rodríguez MM, Calás del CH, Felipe GÁM, Leija SL
Idioma: Español
Referencias bibliográficas: 14
Paginas: 70-76
Archivo PDF: 200.69 Kb.
RESUMEN
En este trabajo se presenta un modelo bidimensional, en base al método de los elementos finitos (EF), del primer molar derecho de la mandíbula (MRFM) con el objetivo de describir el comportamiento del sistema diente, tejido periodontal (PDL), matriz ósea, sometido a tensiones y deformaciones provocadas por cargas equivalentes a las generadas por los aparatos ortodónticos. El modelo tiene en cuenta la geometría compleja del sistema, y se realiza un análisis comparativo del comportamiento lineal elástico y lineal viscoelástico del PDL, con otros resultados reportados en la literatura.
REFERENCIAS (EN ESTE ARTÍCULO)
Jones ML, Hickman J, Middleton J, Knox J, Volp C. A Validated finite element method study of orthodontics tooth movement in human subject. Journal of Orthodontics 2001; 28(1): 29-38.
Cattaneo PM, Dalstra M, Melsen B. The finite element method: a Tool to study orthodontic tooth movement. J Dent Res 2005; 84(5): 428-433.
Berginski M. Modeling bladder muscle: A finite element approach, VCU BBSI Summer Institute. 2005 Final Report.
Rubin C, Krishnamurthy N, Capilouto E, Yi H. Stress analysis of the human tooth using a three-dimensional finite element model. Journal Dental Research 1983; 62(2): 82-86.
Spears IR, van Noort R, Comptom RH, Cardew GE, Howard IC. The effects of enamel anisotropia on the distribution of stress in a tooth. J Dent Res 1983; 72(11): 1528-1531.
Bartakova S, Suchanek J, Miaulka J, Vanuk J. Computer simulation of bony tissue response to a partial removable denture fitted to a lower jaw. Scripta Medica (Brno) 2003; 76(1): 21-28.
Mori M, Ueti M, Matson E, Saito T. Estudo da distribuição das tensões internas, sob carga axial, em dente hígido e em dente restaurado com coroa metalocerâmica e retentor intra-radicular fundido – Método do Elemento Finito. Rev Odontol. Univ São Paulo 1997; 11(2): 99-107.
Chun LL, Chih HCh, Chau HW, Ching ChK, Huey EL. Numerical investigation of the factors affecting interfacial stresses in an MOD restored tooth by auto-meshed finite element method, Taiwan. Journal of Oral Rehabilitation 2001: 517-525.
Shumacher G-H. Odontografía. Anatomía de la superficie dental, Editorial Científico-Técnica, Wilhelm Pieck, Rostock, RDA 1988; 11(44): 95-98.
Linek HA. Tooth Carving Manual, 2nd Ed., Columbia Dentoform, Los Angeles, California 1949; 5: 32-33.
Tizzard A, Horesh L, Yerworth RJ, Holder DS, Bayford RH. Generating accurate finite element meshes for the forward model of the human head in EIT. Physiol Meas 2005; 26: S251-S261.
Provenzano PP, Lakes RS, Corr DT, Vanderby R Jr. Application of nonlinear viscoelastic models to describe ligament behaviour. Biomechan Model Mechanobiol 2002; 1: 45-57.
Futterling S, Klein R, Straber W, Weber H. Automated finite element modeling of a human mandible with dental implants. The Pennsylvania State University.
Schmidt A, Gaul L. FE Implementation of viscoelastic constitutive stress-strain relations involving fractional time derivatives. Institut A f¨ur Mechanik, Universit ¨at Stuttgart, Germany Cite Seer Archives.