2004, Número 1
<< Anterior Siguiente >>
Bioquimia 2004; 29 (1)
Actividad antidrepanocítica de la vainillina sobre hematíes de un paciente con drepanocitemia por microscopía electrónica de transmisión
Toro GG, Valdés RYC, Rosa GMC, Falcón CV, Cabal MCA
Idioma: Español
Referencias bibliográficas: 28
Paginas: 5-10
Archivo PDF: 187.04 Kb.
RESUMEN
La polimerización de las moléculas de desoxihemoglobina S es el evento fisiopatológico primario en la anemia drepanocítica. Los hematíes distorsionados obstruyen los vasos de menor calibre de la microcirculación, provocando una oxigenación tisular deficiente. En la búsqueda de un potencial agente terapéutico se han realizado estudios por cromatografía, electroforesis y resonancia magnética que mostraron la moderada actividad de la vainillina (4-hidroxi-3-metoxibenzaldehído) en la inhibición de la polimerización de la desoxihemoglobina S. En este trabajo se presenta una evaluación
in vitro de la acción de la vainillina sobre los hematíes de un paciente con drepanocitemia utilizando la microscopía electrónica de transmisión. Los hematíes con hemoglobina S fueron incubados por períodos de 5 y 24 h con una solución hidroalcohólica de vainillina, estableciendo una razón molar (hemoglobina S: vainillina) de 1:4. Se utilizaron muestras controles de hematíes con hemoglobina SS para los tiempos 0, 5 y 24 h y una muestra de hematíes con hemoglobina normal AA. Las microfotografías obtenidas mostraron la formación de las fibras de los polímeros de desoxihemoglobina S en las muestras controles SS (tiempos 0, 5 y 24 h). En las muestras tratadas con la vainillina no se observaron fibras en numerosos hematíes y sí una tendencia al incremento del número de hematíes en estado bicóncavo helicoidal. La inhibición de la formación de las fibras de los polímeros de desoxihemoglobina S observada en este estudio corrobora los reportes sobre la moderada actividad antidrepanocítica de la vainillina sugiriendo un posible modo de acción a través de la inhibición de los sitiosde contacto en el polímero.
REFERENCIAS (EN ESTE ARTÍCULO)
Wellems TE, Josephs R. Crystallization of deoxyhemoglobin S by fiber alignment and fusion. J Mol Biol 1979; 135: 651-674.
Kaperonis AA, Handley DA, Chien S. Crystals and other forms of HbS polymers in deoxygenated sickle erythrocytes. Am J Hematol 1986; 21: 269-275.
Eaton WA, Hofrichter J. Sickle cell hemoglobin polymerization. Adv Protein Chem 1990; 40: 67-68.
Schechter AN, Noguchi CT. Sickle hemoglobin polymer: structure-function correlates. Sickle cell disease: basic principles and clinical practice. New York: Raven Press, Ltd; 1994. p. 844-850.
Abraham DJ, Gazze DM, Kennedy PE, Mokotoff M. Design, synthesis, and testing of potential antisickling agents. 5. Disubstituted benzoic acids designed for the donor site and proline salicylates for the acceptor site. J Med Chem 1984; 27: 1549-1559.
Rodgers DW, Crepeau RH, Edelstein SJ. Pairings and polarities of the 14 strands in sickle cell hemoglobin fibers. Proc Natl Acad Sci 1987; 84: 6157-6161.
Harrington DJ, Adachi K, Royer WE. The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol 1997; 272: 398-407.
Dean J, Schechter AN. Sickle cell anemia: molecular and cellular bases of therapeutic approaches. N Engl J Med 1978; 299: 752-763.
Sangre. Composición de la sangre. Enciclopedia de Consulta Microsoft® Encarta® 2003.© 1993-2000 Microsoft Corporation.
Del Toro G. La anemia drepanocítica: orígenes, distribución geográfica y fisiopatología. Inhibición de la polimerización de la hemoglobina S y la falciformación de los glóbulos rojos. En CD: Monografías de Excelencia 2001. Santiago de Cuba, Cuba. ISBN: 959-207-012-1.
Adachi K, Kim J, Ballas SK, Surrey S, Asakura T. Facilitation of HbS polymerization by the substitution of Glu for Gln at b121. J Biol Chem 1988; 263: 5607-5610.
Serjeant GR. Sickle cell disease. 2nd Ed. Great Britain: Oxford Medical Publications; 1992. p. 56, 61, 71-77.
Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337: 762-769.
Eaton WA, Hofrichter J, Ross PD. Delay time of gelation. A possible determinant of clinical severity in sickle cell disease. Blood 1976; 47: 621-627.
Zaugg RM, Walder JA, Klotz IM. Schiff base adducts of hemoglobin. J Biol Chem 1977; 252: 8542-8548.
Abraham DJ, Mehanna AS, Wireko FC, Whitney J, Thomas RP, Orringer EP. Vanillin, a potential agent for the treatment of sickle cell anemia. Blood 1991; 77: 1334-1341.
Abdala JC, Soler C, Fernández AA, Álvarez ED, Del Toro G. Estudio de la interacción de compuestos carbonilos con hemoglobinas in vitro. Valoración de su efecto antisickling. Rev Cub Quím 1996; 8: 3-10.
Álvarez ED, Cabal CA, Fernández AA, Soler C, Lores MA, Del Toro G. IE-HPLC and NMR relaxometry demonstrate a potential roll for vanillin in sickle cell disease. Avan Biotec Mod 1997; 4: E6.
Cabal CA, Fernández AA, Lores MA, Álvarez ED, Losada J, Soler C, Pérez E. Magnetic relaxation in the kinetics of the polymerization of hemoglobin S. Clinical diagnosis and treatment with vanillin. Proceedings of the International Society for Magnetic Resonance in Medicine, Australia; 1998.
Del Toro G, Pozo AR, Rodríguez JC, Fernández AA, Soler C. Influencia del 4-hidroxi-3-metoxibenzaldehído (vainillina) en la polimerización de la hemoglobina S (HbS). Rev Cub Quím 2002; 14: 59-64.
USP XVIII. The United States Pharmacopoeia. 18th ed. Easton PA: The US Pharmacopoeia Convention, Mack Printing Company Inc.; 1970.
AVI Sourcebook and Handbook Series (Source book of flavors). London: A Division of Albright and Wilson, the AVI Publishing Company Inc.; 1981.
Farmacopea de los Estados Unidos Mexicanos. Monografía de Fármacos. 5ª ed. México: Secretaría de Salud; 1988. p. 943-945.
Císcar F, Farreras P. Diagnóstico Hematológico. Tomo II. Barcelona: Editorial JIMS; 1972. p. 1387-1388, 1390, 1422-1426.
Fernández AA, Falcón JE, Del Toro G, Pozo AR. Caracterización de los buffer fosfatos utilizados en la preparación de solución de hemoglobina (Hb) a pH controlado. Rev Cub Quím 2001; 13: 87-96.
Mohandas N, Evans E. Adherence of sickle erythrocytes to vascular endothelial cell: requirement for both cell membrane changes and plasma factors. Blood 1984; 64: 282-287.
Ballas S, Smith ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood 1992; 79: 2154-2163.
Brittenham GM, Schechter AN, Noguchi CT. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Blood 1985; 65:183-189.