<< Anterior Siguiente >>
Salud Mental 2006; 29 (5)
Idioma: Español
Referencias bibliográficas: 70
Paginas: 38-48
Archivo PDF: 158.43 Kb.
RESUMEN
El L-glutamato (Glu) es el principal neurotransmisor excitador del Sistema Nervioso Central (SNC) y ejerce su función por medio de receptores (GluRs) que se clasifican en dos grandes superfamilias. La primera la forman canales iónicos activados por ligando o receptores de glutamato ionotrópicos (iGluRs) permeables a Ca
2+, Na
+ y K
+. Estos se han clasificado en tres familias con base en datos farmacológicos y electrofisiológicos: los receptores para el α-amino-3-hidroxi-5-metil-4-isoxazol propionato (AMPA); los receptores para kainato (KA); y los receptores para N-metil-Daspartato (NMDA). A la segunda superfamilia pertenecen los GluRs acoplados a segundos mensajeros (inositol 3-fosfato, diacilglicerol y AMP cíclico), también llamados receptores metabotrópicos (mGluRs).
La importancia del estudio de los GluRs en el SNC se centra en el papel que estos cumplen en diversas enfermedades neurodegenerativas, como la corea de Huntington, la enfermedad de Parkinson, la enfermedad de Alzheimer, la esclerosis lateral amiotrófica, los accidentes vasculares cerebrales, la epilepsia, la demencia por VIH, la enfermedad de Creutzfeld-Jacob y la hipoglicemia, así como en enfermedades psiquiátricas como la esquizofrenia, la depresión, los trastornos de ansiedad y la enfermedad por estrés postraumático. Además, el Glu, al actuar mediante diversos receptores, desempeña un papel fundamental en los procesos que involucran la diferenciación neuronal y el desarrollo del SNC. Se sabe que existe una expresión diferencial de la gran variedad de subunidades de iGluRs y mGluRs durante la diferenciación y el desarrollo del SNC, la cual depende tanto de su localización en el SNC como de la etapa del desarrollo neuronal.
Durante la neurogénesis, se encuentran niveles altos de Glu en las áreas de desarrollo del SNC que, por activación de diferentes receptores, dan lugar a una señalización por segundos mensajeros, una variación en las concentraciones de calcio intracelular [Ca
2+]i y la expresión de genes importantes en la regulación del ciclo celular; lo anterior promueve el crecimiento y la diferenciación celular, así como la sobrevida neuronal. Además, el Glu favorece el crecimiento del árbol presináptico y la ramificación dendrítica postsináptica, lo que a su vez promueve el establecimiento y el mantenimiento sinápticos. Esto, junto con la eliminación sináptica y el silenciamiento de receptores, es un mecanismo fundamental para establecer redes neuronales maduras. El Glu también es importante para la formación de sinapsis inhibitorias durante el desarrollo.
La activación de GluRs promueve el crecimiento de las dendritas de las neuronas motoras. Se ha observado que los cambios bifásicos en la [Ca
2+]i, en respuesta a Glu, se correlacionan con las fases facilitadoras e inhibidoras del crecimiento dendrítico. La evidencia acumulada indica que, dependiendo de su concentración extracelular y del tipo de receptor estimulado, el Glu puede favorecer o detener la migración neuronal, que es fundamental para el desarrollo del SNC.
Aunque hasta el momento los receptores de tipo NMDA son los más estudiados en el desarrollo del SNC, en esta revisión se muestra la importancia de la gran variedad de GluRs, tanto ionotrópicos como metabotrópicos, en los procesos mencionados anteriormente y que, según su patrón de expresión diferencial durante el desarrollo, cumplen un papel importante en el proceso de formación de las diferentes regiones del SNC desde la embriogénesis hasta la vida adulta.
REFERENCIAS (EN ESTE ARTÍCULO)
BEHAR TN, SCOTT CA, GREENE CL, WEN X, SMITH SV y cols.: Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci, 19(11):4449-4461, 1999.
BRADLEY SR, REES HD, YI H, LEVEY AI, CONN PJ: Distribution and developmental regulation of metabotropic glutamate receptor 7a in rat brain. J Neurochem, 71(2):636-645, 1998.
BRAZEL CY, NUNEZ JL, YANG Z, LEVISON SW: Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience, 131(1):55-65, 2005.
BROWN KM, WRATHALL JR, YASUDA RP, WOLFE B: Quantitative measurement of glutamate receptor subunit protein expression in the postnatal rat spinal cord. Brain Res Dev Brain Res, 137(2):127-133, 2002.
CANUDAS AM, DI GIORGI-GEREVINI V, IACOVELLI L, NANO G, D’ONOFRIO M y cols.: PHCCC, a specific enhancer of type 4 metabotropic glutamate receptors, reduces proliferation and promotes differentiation of cerebellar granule cell neuroprecursors. J Neurosci, 24(46):10343-10352, 2004.
CATANIA MV, BELLOMO M, DI GIORGI-GEREVINI V, SEMINARA G, GIUFFRIDA R y cols.: Endogenous activation of group-I metabotropic glutamate receptors is required for differentiation and survival of cerebellar Purkinje cells. J Neurosci, 21(19):7664-7673, 2001.
CATANIA MV, LANDWEHRMEYER GB, TESTA CM, STANDAERT DG y cols.: Metabotropic glutamate receptors are differentially regulated during development. Neuroscience, 61(3):481-495, 1994.
COLONNESE MT, ZHAO JP, CONSTANTINE-PATON M: NMDA receptor currents suppress synapse formation on sprouting axons in vivo. J Neurosci, 25(5):1291-1303, 2005.
CONN PJ: Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci, 1003:12-21, 2003.
CONN PJ, PIN JP: Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol, 37:205-237, 1997.
COTTRELL JR, DUBE GR, EGLES C, LIU G: Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons. J Neurophysiol, 84(3):1573-1587, 2000.
CULL-CANDY S, BRICKLEY S, FARRANT M: NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3):327-335, 2001.
CULL-CANDY SG, LESZKIEWICZ DN: Role of distinct NMDA receptor subtypes at central synapses. Sci STKE, 2004(255):re16, 2004.
DI GIORGI GEREVINI VD, CARUSO A, CAPPUCCIO I, RICCI VITIANI L, ROMEO S y cols.: The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Brain Res Dev Brain Res, 150(1):17-22, 2004.
DINGLEDINE R, BORGES K, BOWIE D, TRAYNELIS SF: The glutamate receptor ion channels. Pharmacol Rev, 51(1):7-61, 1999.
ELEZGARAI I, BENITEZ R, MATEOS JM, LAZARO E, OSORIO A y cols.: Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat. J Comp Neurol, 411(3):431-440, 1999.
FUKAYA M, HAYASHI Y, WATANABE M: NR2 to NR3B subunit switchover of NMDA receptors in early postnatal motoneurons. Eur J Neurosci, 21(5):1432-1436, 2005.
FURUTA A, MARTIN LJ: Laminar segregation of the cortical plate during corticogenesis is accompanied by changes in glutamate receptor expression. J Neurobiol, 39(1):67-80, 1999.
GILLESPIE DC, KIM G, KANDLER K: Inhibitory synapses in the developing auditory system are glutamatergic. Nat Neurosci, 8(3):332-338, 2005.
HANNAN AJ, BLAKEMORE C, KATSNELSON A, VITALIS T, HUBER KM y cols.: PLC-beta1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci, 4(3):282-288, 2001.
HERKERT M, ROTTGER S, BECKER CM: The NMDA receptor subunit NR2B of neonatal rat brain: complex formation and enrichment in axonal growth cones. Eur J Neurosci, 10(5):1553-1562, 1998.
HIRAI H, LAUNEY T: The regulatory connection between the activity of granule cell NMDA receptors and dendritic differentiation of cerebellar Purkinje cells. J Neurosci, 20(14):5217-5224, 2000.
HOLLMANN M, HEINEMANN S: Cloned glutamate receptors. Annu Rev Neurosci, 17:31-108, 1994.
INGLIS FM, FURIA F, ZUCKERMAN KE, STRITTMATTER SM, KALB RG: The role of nitric oxide and NMDA receptors in the development of motor neuron dendrites. J Neurosci, 18(24):10493-10501, 1998.
IWASATO T, DATWANI A, WOLF AM, NISHIYAMA H, TAGUCHI Y y cols.: Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797):726-731, 2000.
IWAYAMA Y, HASHIMOTO K, NAKAJIMA M, TOYOTA T, YAMADA K y cols.: Analysis of correlation between serum D-serine levels and functional promoter polymorphisms of GRIN2A and GRIN2B genes. Neurosci Lett, 394(2):101-104, 2005.
JAVITT DC: Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry, 9(11):984-997, 2004.
KEINANEN K, WISDEN W, SOMMER B, WERNER P, HERB A y cols.: A family of AMPA-selective glutamate receptors. Science, 249(4968):556-560, 1990.
KIDD FL, COUMIS U, COLLINGRIDGE GL, CRABTREE JW, ISAAC JT: A presynaptic kainate receptor is involved in regulating the dynamic properties of thalamocortical synapses during development. Neuron, 34(4):635-646, 2002.
KITAYAMA T, YONEYAMA M, TAMAKI K, YONEDA Y: Regulation of neuronal differentiation by N-methyl-D-aspartate receptors expressed in neural progenitor cells isolated from adult mouse hippocampus. J Neurosci Res, 76(5):599-612, 2004.
KOMURO H, RAKIC P: Modulation of neuronal migration by NMDA receptors. Science, 260(5104):95-97, 1993.
LAI F, CHEN CX, LEE VM, NISHIKURA K: Dramatic increase of the RNA editing for glutamate receptor subunits during terminal differentiation of clonal human neurons. J Neurochem, 69(1):43-52, 1997.
LAURIE DJ, SEEBURG PH: Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci, 14(5 Pt 2):3180-3194, 1994.
LEE LJ, ERZURUMLU RS: Altered parcellation of neocortical somatosensory maps in N-methyl-D-aspartate receptordeficient mice. J Comp Neurol, 485(1):57-63, 2005.
LEE LJ, LO FS, ERZURUMLU RS: NMDA receptor-dependent regulation of axonal and dendritic branching. J Neurosci, 25(9):2304-2311, 2005.
LEE-RIVERA I, ZARAIN-HERZBERG A, LOPEZ-COLOME AM: Developmental expression of N-methyl-D-aspartate glutamate receptor 1 splice variants in the chick retina. J Neurosci Res, 73(3):369-383, 2003.
LERMA J: Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci, 4(6):481-495, 2003.
LI JH, WANG YH, WOLFE BB, KRUEGER KE, CORSI L y cols.: Developmental changes in localization of NMDA receptor subunits in primary cultures of cortical neurons. Eur J Neurosci, 10(5):1704-1715, 1998.
LIN YC, HUANG ZH, JAN IS, YEH CC, WU HJ y cols.: Development of excitatory synapses in cultured neurons dissociated from the cortices of rat embryos and rat pups at birth. J Neurosci Res, 67(4):484-493, 2002.
LOBO MK, ITRI JN, CEPEDA C, CHAVIRA CA, LEVINE MS: Ionotropic glutamate receptor expression and dopaminergic modulation in the developing subthalamic nucleus of the rat: an immunohistochemical and electrophysiological analysis. Dev Neurosci, 25(6):384-393, 2003.
LOPEZ-BENDITO G, SHIGEMOTO R, FAIREN A, LUJAN R: Differential distribution of group I metabotropic glutamate receptors during rat cortical development. Cereb Cortex, 12(6):625-638, 2002.
LOPEZ-BENDITO G, SHIGEMOTO R, LUJAN R, JUIZ JM: Developmental changes in the localisation of the mGluR1alpha subtype of metabotropic glutamate receptors in Purkinje cells. Neuroscience, 105(2):413-429, 2001.
LUJAN R, SHIGEMOTO R, LOPEZ-BENDITO G: Glutamate and GABA receptor signalling in the developing brain. Neuroscience, 130(3):567-580, 2005.
LUK KC, KENNEDY TE, SADIKOT AF: Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J Neurosci, 23(6):2239-2250, 2003.
LUK KC, SADIKOT AF; Glutamate and regulation of proliferation in the developing mammalian telencephalon. Dev Neurosci, 26(2-4):218-228, 2004.
MADDEN DR: The structure and function of glutamate receptor ion channels. Nat Rev Neurosci, 3(2):91-101, 2002.
MARIC D, LIU QY, GRANT GM, ANDREADIS JD, HU Q y cols: Functional ionotropic glutamate receptors emerge during terminal cell division and early neuronal differentiation of rat neuroepithelial cells. J Neurosci Res, 61(6):652-662, 2000.
MARRET S, GRESSENS P, EVRARD P: Arrest of neuronal migration by excitatory amino acids in hamster developing brain. Proc Natl Acad Sci U S A, 93(26):15463-15468, 1996.
MARTIN LJ, FURUTA A, BLACKSTONE CD: AMPA receptor protein in developing rat brain: glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience, 83(3):917-928, 1998.
MCFEETERS RL, OSWALD RE: Emerging structural explanations of ionotropic glutamate receptor function. Faseb J, 18(3):428-438, 2004.
METZGER F, PIERI I, EISEL UL: Lack of NMDA receptor subunit exchange alters Purkinje cell dendritic morphology in cerebellar slice cultures. Brain Res Dev Brain Res, 155(2):165-168, 2005.
MINAKAMI R, IIDA K, HIRAKAWA N, SUGIYAMA H: The expression of two splice variants of metabotropic glutamate receptor subtype 5 in the rat brain and neuronal cells during development. J Neurochem, 65(4):1536-1542, 1995.
MORRISON ME, MASON CA: Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate signaling. J Neurosci, 18(10):3563-3573, 1998.
NGUYEN L, RIGO JM, ROCHER V, BELACHEW S, MALGRANGE B y cols: Neurotransmitters as early signals for central nervous system development. Cell Tissue Res, 305(2):187-202, 2001.
OKABE S, VICARIO-ABEJON C, SEGAL M, MCKAY RD: Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. Eur J Neurosci, 10(6):2192-2198, 1998.
PISU MB, GUIOLI S, CONFORTI E, BERNOCCHI G: Signal molecules and 11.5receptors in the differential development of cerebellum lobules. Acute effects of cisplatin on nitric oxide and glutamate systems in Purkinje cell population. Brain Res Dev Brain Res, 145(2):229-240, 2003.
POLUCH S, DRIAN MJ, DURAND M, ASTIER C, BENYAMIN Y, KONIG N: AMPA receptor activation leads to neurite retraction in tangentially migrating neurons in the intermediate zone of the embryonic rat neocortex. J Neurosci Res, 63(1):35-44, 2001.
RAJAN I, CLINE HT: Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci, 18(19):7836-7846, 1998.
RITTER LM, VAZQUEZ DM, MEADOR-WOODRUFF JH: Ontogeny of ionotropic glutamate receptor subunit expression in the rat hippocampus. Brain Res Dev Brain Res, 139(2):227-236, 2002.
SCHERER SE, GALLO V: Expression and regulation of kainate and AMPA receptors in the rat neural tube. J Neurosci Res, 52(3):356-368, 1998.
SOMMER B, KEINANEN K, VERDOORN TA, WISDEN W, BURNASHEV N y cols.: Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science, 249(4976):1580-1585, 1990.
STEGENGA SL, KALB RG: Developmental regulation of N-methyl-D-aspartate- and kainate-type glutamate receptor expression in the rat spinal cord. Neuroscience, 105(2):499-507, 2001.
SUGIURA N, PATEL RG, CORRIVEAU RA: N-methyl-Daspartate receptors regulate a group of transiently expressed genes in the developing brain. J Biol Chem, 276(17):14257-14263, 2001.
SUN L, MARGOLIS FL, SHIPLEY MT, LIDOW MS: Identification of a long variant of mRNA encoding the NR3 subunit of the NMDA receptor: its regional distribution and developmental expression in the rat brain. FEBS Lett, 441(3):392-396, 1998.
TAKAI H, KATAYAMA K, UETSUKA K, NAKAYAMA H, DOI K: Distribution of N-methyl-D-aspartate receptors (NMDARs) in the developing rat brain. Exp Mol Pathol, 75(1):89-94, 2003.
TOLIAS KF, BIKOFF JB, BURETTE A, PARADIS S, HARRAR D, TAVAZOIE S, WEINBERG RJ, GREENBERG ME: The Rac1-GEF Tiam1 couples the NMDA receptor to the activity-dependent development of dendritic arbors and spines. Neuron, 45(4):525-538, 2005.
WAXMAN EA, LYNCH DR: N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist, 11(1):37-49, 2005.
WILSON MT, KISAALITA WS, KEITH CH: Glutamate-induced changes in the pattern of hippocampal dendrite outgrowth: a role for calcium-dependent pathways and the microtubule cytoskeleton. J Neurobiol, 43(2):159-172, 2000.
XIAO MY, WASLING P, HANSE E, GUSTAFSSON B: Creation of AMPA-silent synapses in the neonatal hippocampus. Nat Neurosci, 7(3):236-243, 2004.
ZARAIN-HERZBERG A, LEE-RIVERA I, RODRIGUEZ G, LOPEZ-COLOME AM: Cloning and characterization of the chick NMDA receptor subunit-1 gene. Brain Res Mol Brain Res, 137(1-2):235-251, 2005.