2006, Número 1-3
<< Anterior
Perinatol Reprod Hum 2006; 20 (1-3)
Trascendencia de los factores ambientales y genéticos en cardiopatías congénitas:
Sánchez-Urbina R, Galaviz-Hernández C, Sierra-Ramírez A, Morán-Barroso VF, García-Cavazos R
Idioma: Español
Referencias bibliográficas: 49
Paginas: 39-47
Archivo PDF: 124.73 Kb.
RESUMEN
Las cardiopatías congénitas (CC) en México son la tercera causa de muerte en niños menores de un año y la sexta en niños de tres años de edad. En su etiología las CC presentan una heterogeneidad genética, y en su mayoría son de herencia multifactorial. Se considera que las CC y los defectos de tubo neural (DTN) son las entidades más comunes de origen multifactorial. Se ha reconocido que la pobre ingesta de ácido fólico es uno de los factores ambientales que se relacionan con los DTN, así como la presencia del polimorfismo
C677T de la enzima metiltetrahidrofolato reductasa (MTHFR), lo que lleva a un aumento de la homocisteína en sangre. Dada la relación entre algunos procesos de desarrollo cardiaco y del tubo neural, se cree que la enzima MTHRF puede participar en la génesis de las CC. Al respecto, se han realizado estudios acerca de cómo la ingesta de multivitamínicos, disminuyen el riesgo de CC en 24% de los casos, asociada con polimorfismo
C677T de la
MTHFR en pacientes con CC y aumento de homocisteína en líquido amniótico y plasma en madres de los pacientes con CC. Estudios en biología experimental sustentan que el aumento en los niveles de homocisteína tiene un efecto teratógeno que provoca DTN y CC, entre otras malformaciones. El presente artículo revisa la información acerca de la posible relación entre el polimorfismo
C677T, la homocisteína y el desarrollo de CC y plantea la posible prevención de las CC a través del control de la ingesta de ácido fólico.
REFERENCIAS (EN ESTE ARTÍCULO)
Hoffman JIE. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 1995; 15: 155-65.
Mitchell SC, Korones SB Berendes HW, Congenital heart disease in 56,109 Births incidence and Natural History. Circulation 1971; XLIII: 323-32.
Hoffman JIE, Chistianson R, Congenital Heart Disease in a cohort of 19, 502 births with long-term follow-up. Am J Cardiol 1978; 42: 641-7.
Ferencz C, Rubin JD, McCarter RJ, Brenner JI, Neill CA, Perry LW, Herpner SI, Downing JW. Congenital Heart Disease: prevalence at live birth. Am J Epidemiol 1985; 121: 31-6.
Loffredo CA. Epidemiology of cardiovascular malformations: prevalence and risk factors. Am J Med Genet 2000; 97: 319-25.
Dirección General de Información en Salud, Secretaría de Salud. Mortalidad preescolar. Boletín Médico del Hospital Infantil de México 2005; 62: 69-82.
Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr 1989; 114: 79-86.
Johnson MC, Hing A, Wood MK, Watson MS. Chromosome abnormalities in congenital heart disease. Am J Med Genet 1997; 70: 292-8.
Maeda JH, Yamagishi H, Matsuoka R, Ishihara J, Tokumura M, Fukushima H, et al. Frequent Association of 22q11.2 Deletion With Tetralogy of Fallot. Am J Med Genet 2000; 92: 269-72.
Marino B, Digilio MC, Grazioli S, Formiagari R, Mingarelli R, Giannotti A, Dallapiccola B. Associated cardiac anomalies in isolated and sindromic patients with tetralogy of fallot. Am J Cardiol 1996; 77: 505-8.
Melchionda S, Digilio MC, Mingarelli R, Novelli G, Scambler P, Marino B, et al. Transposition of the great arteries associated with deletion of chromosome 22q11. Am J Cardiol 1995; 75: 95-8.
Goldmuntz E, Clark BJ, Mitchell LE, Jawad A.F, Cuneo BF, Reed L, et al. Frecuency of 22q11 Deletions in patients with conotruncal defects. Pediatr Cardiol 1998; 32: 492-8.
Van der Put NMJ, Gabreëls F, Stevens EMB, Smeitinik JAM, Trjbels FJM, Eskes TKA, et al. Am J Hum Genet 1998; 62: 1044-51.
Frosst P, Blom H, Milos R. Identification of a candidate genetic risk factor for vascular disease: a common mutation in methylente-trahydrofolate reductase. Nat Genet 1995; 10:111-3.
Nussbaumr RL, Mc Inees RR, Willard HF. Thompson & Thompson Genetics in Medicine. 6th Ed. Edit. Saunders; 2001, p. 304-10.
Relton CL, Wilding CS, Pearce MS Laffing AJ, Jonas PA, Lynch SA, Tawn EJ, Burn J. Gene-gene interaction in folate-related genes and risk of neural tube defects in a UK population. J Med Genet 2004; 41: 256-60.
Boyles AL, Hammock P, Speer MC. Candidate gene analysis in human neural tube defects. Am J Med Genet (Semin Med Genet) 2005; 135C: 9-23.
Goyette P, Sumner JS, Milos R, Duncan AMV, Rosenblatt DS, Matthews RG, et al. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 1994; 7: 195-200.
Guéant-Rodriguez RM, Guéant JL, Debard R, Thirion S, Hong LX, Bronowicki JP, et al. Prevalence of methylenetetrahydrofolate reductase 6777T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am J Clin Nutr 2006; 83: 701-7.
Botto LD. 5, 10-methylenetetrahydrofolate reductase gene variants and congenital anomalies. AhuGE Review. Am J Epidemiol 2000; 151: 862-77.
Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Renlund M, et al. Geographical and ethnic variation of the 677C > T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 2003; 40: 619-25.
Disponible en: www.ncbi.nlm.nih.gov
Van der Put NMJ, Gabreëls F, Stevens EMB, Smeitink JAM, Trijbels FJM, Eskes TKA, van den Heuvel LP, Blom HJ. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998; 62: 1044-51.
Weisberg I, Tran P, Christensen B, Sibani S, Rozen R, Congenital heart defects and maternal derangement of homocysteine metabolism. Mol Genet Metab 1998, 64(3): 169-72.
Scriver CR, Beaudet AL, William SS, Valle D. The Metabolic & Molecular Bases Inherited Disease. 8th Ed. McGraw-Hill; 2001, p. 3897-933.
Davalos RIP, Olivares P, Castillo MT, Cantú JM, Ibarra B, Moran MC, et al. The C677T polimorphism of the methylenetetra-hydrofolate reductase gene in Mexican mestizo neural-tube defect parents, control mestizo and native populations. Ann Genet 2002; 43: 89-92.
Mutchinick OM, López MA, Luna L, Waxman J, Babinsky VE, RYVEMCE collaborative Group. Hig prevalence of the thermolabile metylenetetrahydrofolate reductase variant in Mexico: a country with a very high prevalence of neural tube defects. Mol Genet Metab 1999; 68: 461-7.
González-Herrera L, García-Escalante G, Castillo-Zapata I, Canto-Herrera J, Pinto-Escalante D, Díaz-Rubio F, et al. Frecuency of thermolabile variant defects in the State of Yucatan, México. Clin Genet 2002; 62: 394-8.
Fonseca V, Guuba SC, Fink LM, Hyper-homocysteinemia and the endocrine system: implications for atherosclerosis and trombosis. Endocr Rev 1999; 20: 738-59.
Selhub J. Homocysteine metabolism. Annu Rev Nutr 1999; 19: 217-46.
Aubard Y, Darodes N, Cantaloube M, Hyperhomocysteinemia and pregnancy-review of our pre understanding and therapeutic implications, European. J Gynecol Obstet Biol Reprod 2000; 93: 157-65.
Wenstrom KD, Johanning GL, Johnston KE, Dubard M. Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine levels with congenital cardiac malfomations. Am J Obstet Gynecol 2001; 184: 806-17.
Medina MA, Urdiales JL, Amores-Sánchez MI. Role of homocysteine in cell metabolism. Eur J Biochem 2001; 268: 3871-82.
Ek J, Magnus EM. Plasma and red blood cell folate during normal pregnancies. Acta Obstet Gynecol Scand 1981; 60: 247-51.
Malinow MR, Rajkovic A, Duell PB, Hess DL, Upson BM. The relationship between maternal and neonatal umbilical cord plasma homocyst(e)ine suggest a potential role for a maternal homocyst(e)ine in fetal metabolism. Am J Obstet Gynecol 1998; 178: 228-33.
Molloy AM, Mills JL, McPartlin J, Kirke PN, Scott JM, Daly S. Maternal and fetal plasma homocysteine concentrations at birth: the influence of folate, vitamin B12, and the 5,10-methylenetetrahydrofolate reductase 677C® T variant. Am J Obstet Gynecol 2002; 186: 499-503.
Bonnette RE, Caudill MA, Boddie AM, Hutson AD, Kauwell GPA, Bailey LB. Plasma homocyst(e)ine concentrations in pregnant and nonpregnant women with controlled folate intake. Obstet Gynecol 1998; 92: 167-70.
Walker MC, Smith GN, Perkins SL, Keelv EJ, Garner PR. Changes in homocysteine levels during normal pregnancy. Am J Obstet Gynecol 1999; 180: 360-4.
Daly SF, Molloy AM, Millis JL, Lee YJ, Conley M, Kirke PN, et al. The influence of 5,10 methylenetetrahydrofolate reductase genotypes on enzyme activity in placental tissue. Br J Obstet Gynecol 1999; 106: 1214-8.
Botto LD, Khoury MJ, Mulinare J, Erickson JD. Periconceptional multivitamin use and the ocurrence of conotruncal heart defects: results from a population-based, case-control study. Pediatrics 1996; 98: 911-7.
Czeizel AE. Prevention of congenital abnormalities by periconceptional multivitamin supplementation. Br Med J 1993; 306: 1645-8.
Kapusta L, Haagmans MLM, Steegers EAP, Cuypers MHM, Blom HJ, Eskes TKAB. J Pediatr 1999; 135: 773-4.
Junker R, Kotthoff S, Heintich V, Halimeh S, Kosch A, Koch HG, et al. Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovasc Res 2001; 51: 251-4.
Rosenquist TH, Tatashak S A, Selhub J. Homocysteine induces congenital defects of the heart and neural tube: Effect of folic acid. Proc Natl Acad Sci 1996; 93: 1527-32.
Rosenquist TH, Schneider AM, Monachan DT. N-methyl-D-aspartate receptor agonists modulate homocysteine-induced developmental abnormalities. FASEB J 1999; 13: 1523-31.
Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, et al. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 1992; 256: 1217-21.
Goodman & Guillman A. Bases farmacoló-gicas de la terapéutica. 10a. ed. Ed. Mc Graw Hill, Interamericana; 2003.
Komuro H, Rakic P. Modulation of neural migration by NMDA receptors. Science 1993; 260: 95-7.
Andaloro VJ, Monaghan DT, Rosenquist TH. Dextromethorphan and Other N-Methyl-D-Aspartate Receptor Antagonists are teratogenic in the avian embryo model. Pediatr Res 1998; 43: 1-7.