2003, Número 3
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2003; 11 (3)
Recambio proteínico en sepsis
Casas RML, Zúñiga RA, Pasquetti CA, Meléndez MG
Idioma: Español
Referencias bibliográficas: 27
Paginas: 136-141
Archivo PDF: 127.23 Kb.
RESUMEN
La sepsis, como resultado de la agresión externa y la respuesta a ella, conlleva alteraciones metabólicas que implican aumento del recambio de glucosa, e incremento de gluconeogénesis. El catabolismo del músculo durante la sepsis es consecuencia tanto de estimulación de proteólisis como de inhibición de la síntesis de proteínas, mediadas por interacción hormonal (insulina, factor de crecimiento tipo insulina, glucocorticoides) y de citocinas (factor de necrosis tumoral, interleucina-1) además por deficiencia de sustratos. Todo ello produce pérdida de proteínas corporales mayor de 0.5 g/kg/día. Las terapias actuales están enfocadas a reducir el catabolismo proteínico muscular y promover el aumento de la masa magra, para lo que se han utilizado infusiones de insulina, hormona del crecimiento, factor de crecimiento tipo insulina, bloqueadores de proteasomas, glutamina y bloqueadores de factor de necrosis tumoral.
REFERENCIAS (EN ESTE ARTÍCULO)
Wesley AJ. Nutritional management of the infected patient In: Kinney JM. Nutrition and Metabolism in Patient Care. Saunders 1988. Philadelphia.
Beisel WR. Metabolic response to infection. In: Kinney JM. Nutrition and Metabolism in Patient Care. Saunders 1988. Philadelphia.
Hamish NM. Metabolic integration of organs in health and disease. JPEN 1982; 6: 271-279.
Shaw J, Wildbore M, Wolfe R. Whole body protein kinetics in severely septic patients. Ann Surg 1987; 205: 288-294.
Long CL, Jeevanandam M, Kim BM, Kinney JM. Whole body protein synthesis and catabolism in septic man. Am J Clin Nutr 1977; 30: 1340-1344.6. Hasselgren P, Pedersen P, Sax H, Warner B, Fisher J. Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch Surg 1988; 123: 992-999.
Jurasinski Ch, Kilpatrick L, Vary T. Aminone prevents muscule protein wasting during chronic sepsis. Am L Physiol 1995; E491-E500.
Cooney R, Kimball S, Eckman R, Maish G, Shumate M et al. TNF-binding protein ameliorates inhibition of skeletal muscle protein synthesis during sepsis. Am J Phisiol 1999; 276: E611-619.
Clarck MA, Hentzen B, Plank L, Hill G. Sequential changes in lnsulin-like growth factor 1, plasma proteins, and total body protein in severe sepsis and multiple injury. JPEN 1996; 20: 263-70.
Plank L, Hill G. Sequential Metabolic following Induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg 2000; 24: 630-8.
Billar TR, Curran RD, Ferrari FK et al. Kupffer cell: hepatocyte cultures release nitric oxide in response to bacterial endotoxin. J Surg Res 1990; 48: 349.
Tiao G, Fagan JM, Samuels N et al. Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquin mRNAs levels in rat skeletal muscle. J Clin Invest 1994; 94: 2255.
Tiao G, Hobler S, Wang JJ et al. Sepsis is associated with increased mRNAs of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J Clin Invest 1997; 99: 163.
Cerra FB, Siegel JH, Coleman B et al. Septic autocannibalism: A failure of exogenous nutritional support. Ann Surg 1980; 192: 570.
Barry A. Mizock. Metabolic derangement in sepsis and shock. In Critical Care Clinics 2000; 16: 319-336.
Drumi W, Heinzel G, Kleinberger G. Amino acid kinetics in patients with sepsis. Am J Clin Nutr 2001; 73: 908-13.
Wernerman J. Skeletal muscle in the stress-induced catabolic state. In Revhaug A: Accute Catabolic State: Update in Intensive Care and Emergency Medicine (vol 21). Berlin Springer, 1996: 89.
Pumpley DA, Souba WW, Hautamaki D et al. Accelerated lung amino acid released in hyperdynamic septic surgical patients. Arch Surg 1990; 125: 57.
Newsholme EA. Parry-Billings M. Properties of glutamine release from muscle and its importance for the immune system. JPEM 1990; 14: 63S.
Roth E, Funovics J, Muhlbacher F et al. Metabolic disorders in severe abdominal sepsis. Glutamine deficiency in skeletal muscle. Clin Nutr 1982; 1: 225.
Deitch EA, Winterton J, Li M et al. The gut as a portal of entry for bacteremia: The role of protein malnutrition. Ann Surg 1987; 205: 681-692.
Giannotti L, Alexander JW, Nelson JL et al. Role of early enteral feeding and acute stavation on postburn bacterial translocation and host defense: Protective, randomized trials. Crit Care Med 1994; 22: 265-272.
Crouser E, Dorinsky PM. Metabolic consequences of sepsis Clinics in Chest Medicine 1996; 17: 249-261.
Gamrin L, Essen P, Hultman E, McNurlan M, Garlick P, Wemerman J. Protein-sparing effect in skeletal muscle of growth hormone treatment in critically ill patients. Annals of Surgery 2000; 241(14).
Karinch A, Pan M, Lin Ch, Strange R, Souba W. Glutamine metabolism in sepsis and infection. Journal of Nutrition 2001; 131: 2535S-38S.
Lang Ch, Fan J, Cooney R, Vary T. IL-1 receptor antagonist attenuates sepsis-induced alterations in the IGF system and protein synthesis. Am J Physiol 1996; 270: E430-E437.
Breuillé D, Farge R, Arland M, Attaix D, Obled C. Pentoxifyline decreases body weight loss and muscle protein wasting characteristics of sepsis. Am J Physiol 1993; 265: E660-E666.
O’Leary MJ, Ferguson CN, Rennie M, Hinds ChJ, Coakley JH, Preedy VR. Effect of growth hormone on muscle and liver protein synthesis in septic rats receiving glutamine-enriched parenteral nutrition. Critical Care Med 2002; 30(5).