2006, Número 5
<< Anterior Siguiente >>
salud publica mex 2006; 48 (5)
Linfocitos T citotóxicos CD8+ en la leishmaniasis cutánea
Hernández-Ruiz J, Becker I
Idioma: Español
Referencias bibliográficas: 87
Paginas: 430-439
Archivo PDF: 180.60 Kb.
RESUMEN
Objetivo. Examinar la bibliografía relacionada con la participación de los linfocitos T CD8+ en la reacción inmunitaria a especies de
Leishmania causantes de leishmaniasis cutánea. En esta enfermedad se ha resaltado la intervención de macrófagos, células dendríticas, NK y células T CD4
+; sin embargo, es poco lo que se conoce de las células T CD8
+. Los trabajos en modelos murinos señalan que la participación de las células CD8+ sucede a través de la producción de IFN-gamma, aunque su capacidad citotóxica puede desempeñar una función importante, como lo demuestran los hallazgos en seres humanos. La forma como se activan las células citotóxicas CD8+ es un enigma. Es posible que las células dendríticas realicen esa labor a través de mecanismos que incluyen transpresentación de antígenos. Comprender la contribución de este subtipo celular en la respuesta inmunitaria a
Leishmania aportará novedosos conocimientos sobre la fisiopatogenia de la leishmaniasis, lo cual hará posible desarrollar nuevos enfoques terapéuticos para esta parasitosis.
REFERENCIAS (EN ESTE ARTÍCULO)
Mauël J. Macrophage-parasite interactions in Leishmania infections. J Leukoc Biol 1990;47:187-193.
Vieira L. pH and volume homeostasis in tripanosomatids: current views and perspectives. Biochim Biophys Acta 1998;1376:221-241.
Hepburn NC. Cutaneous leishmaniasis: current and future management. Expert Rev Anti Infect Ther 2003;1(4):563-570.
Olliaro PL, Bryceson A. Practical progress and new drugs for changing patterns of leishmaniasis. Parasitol Today 1993;9:323-328.
Dey S, Papadopoulou B, Haimeur A, Roy G, Grondin K, Dou D, et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol 1994;67:49-57.
Montoya F, Restrepo M, Gómez M. Inmunidad humoral y celular en la leishmaniasis cutánea. Acta Med Colomb 1990;15:18-29.
Singh S, Sivakumar R. Challenges and new discoveries in the treatment of leishmaniasis. J Infect Chemother 2004;10(6):307-315.
Russell DG, Xu S, Chakraborty P. Intracellular trafficking and the parasitophorus vauole of Leishmania mexicana-infected macrophages. J Cell Sci 1992;10:1193-1210.
Berman J. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin Infect Dis 1997;24:684-703.
Velasco O. Leishmaniasis cutánea en voluntarios humanos. México: Memoria del Congreso Mexicano de Dermatología, 1970.
Agudelo S, Robledo S. Respuesta inmune en infecciones humanas por Leishmania spp. IATREIA 2000;13:167-178.
Scott P. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol 1991;147:149-155.
Rossi-Bergmann B, Müller I, Godinho EB. Th1 and Th2 T-cell subsets are differentially activated by macrophages and B cell in murine leishmaniasis. Infect Immun 1993;61:266-269.
Cox F, Liew FY. T-cell subsets and cytokines in parasitic infections. Immunol Today 1992;13:445-448.
Kemp M, Hansen MB, Theander TG. Recognition of Leishmania antigens by T lymphocytes from non-exposed individuals. Infect Immun 1992;60:246-251.
Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002;2:845-858.
Harty J, Tvinnereim A, White D. CD8+ T cell effectors mechanisms in resistance to infection. Annu Rev Immunol 2000;18:275-308.
Kägi D, Ledermann B, Bürki K, Zinkernagel RM, Hengartner H. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu Rev Immunol 1996;14:207-232.
Trapani J, Smyth M. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002;2:735-747.
Wooland D, Dutton R. Heterogeneity of CD4+ and CD8+ T cells. Curr Opin Immunol 2003;15:336-342.
Cerwenka A, Carter L, Reome J, et al. In vivo persistence of CD8 polarized T cell subsets producing type 1 or type 2 cytokines. J Immunol 1998;161:97-105.
Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 2004;114:1198-1208.
Bourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 2002;297:2060-2063.
Schoenberger S, Toes R, van der Voort E, Offringa R, Melief CJM. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nat 1998;393:480-483.
Doherty P. The numbers game for virus-specific CD8+ T cells. Science 1998;280:227-233.
Melief C. Regulation of T lymphocyte responses by dendritic cells: peaceful coexistence of cross-priming and direct priming? Eur J Immunol 2003;33:2645-2654.
Ridge J, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and T-killer cell. Nat 1998;393:474-478.
Hernandez J, Aung S, Marquardt K, Sherman L. Uncoupling of proliferative potential and gain of effector function by CD8+ T cells responding to self-antigens. J Exp Med 2002;196:323-332.
Smith C, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, et al. Cognate CD4+ T cell licensing of dendritic cells in CD8+ T cell immunity. Nat Immunol 2004;5:1143-1148.
Propato A, Cutrona G, Francavilla V. Apoptotic cells overexpress vinculin and induce vinculin-specific cytotoxic T-cell cross-priming. Nat Med 2001;7:807-813.
Accapezzato D, Francavilla V, Propato A, Paroli M, Barnaba V. Mechanisms inducing or controlling CD8+ T cell responses against self- or non-self-antigens. Ann NY Acad Sci 2003;987:99-106.
Roger PM, Bermudez LE. Infection of mice with Mycobacterium avium primes CD8+ lymphocytes for apoptosis upon exposure to macrophages. Clin Immunol 2001;99:378-386.
Fong T, Mosmann TR. Alloreactive murine CD8+ T cell clones secrete the Th1 pattern of cytokines. J Immunol 1990;144:744-752.
Müller I, Kropf P, Etges RJ, Louis JA. Gamma interferon response in secondary Leishmania major infection: role of CD8+ T cells. Infect Immun 1993;61:3730-3738.
Huber M, Timms E, Mak E, Röllinghoff M, Lohoff M. Effective and long lasting immunity against the parasite Leishmania major in CD8-deficient mice. Infect Immun 1998;66:3968-3970.
Titus R. Involvement of specific Liyt-2+ T cells in the immunological control of experimental induced murine cutaneous leishmaniosis. Eur J Immunol 1987;17:1429-1433.
Belkaid Y. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 2002;168:3992-4000.
Uzonna J, Joyce K, Scout P. Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by Interferon g –producing CD8+ T cells. J Exp Med 2004;199:1559-1566.
Conceição F, Perlaza B, Louis J, Romero P. Leishmania major infection in mice primes for specific major histocompatibility complex class-I restricted cytotoxic T cell responses. Eur J Immunol 1994;24:2813-2817.
Pinheiro R, Fonseca E, Correia J, et al. TGF-_-associated enhanced susceptibility to leishmaniasis following intramuscular vaccination of mice with Leishmania amazonensis antigens. Microbes Infect 2005;10:1016.
Farajnia S, Mahboudi F, Ajdari S, Reiner NE, Kariminia A, Alimohammadian MH. Mononuclear cells from patients recovered from cutaneous leishmaniasis respond to Leishmania major amastigote class I nuclease with a predominant Th1-like response. Clin Exp Immunol 2005;139:498-505.
Da-Cruz AM, Conceicao-Silva F, Bertho AL, et al. Leishmania-reactive CD4+ and CD8+ T cells associated with cure of human cutaneous leishmaniasis. Infect Immun 1994;62:2614-2618.
Da-Cruz A, Bittar R, Mattos M, Oliveira-Neto M, Nogueira R, Pinho-Ribeiro V, et al. T cell mediated immune responses in patients with cutaneous or mucosal leishmaniasis: Long term evaluation alter therapy. Clin Diagn Lab Immunol 2002;9:251-256.
Da-Cruz A, Bertho A, Oliveira-Neto M, Coutinho SG. Flow cytometric analysis of cellular infiltrate from american tegumentary leishmaniasis lesions. Brit J Dermatol 2005;153:537-543.
Gaafar A, Veress B, Permin H, Krarazmi A, Theander TG, El-Hassan AM. Characterization of the local and systemic immune response in patients with cutaneous leishmaniasis due to Leishmania major. Clin Immunol 1999;91:314-320.
Salaiza N, Volkow P, Perez R, Moll H, Gillitzer R, Pérez-Torres A, et al. Treatment of two patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana modifies the immunohistological profile but not the disease outcome. Trop Med Int Health 1999;4:801-811.
Bertho A, Santiago M, Da-Cruz A, Coutinho SG. Detection of early apoptosis and cell death in T CD4+ and CD8+ cells from lesions of patients with localized cutaneous leishmaniasis. Braz J Med Biol Res 2000;33:317-325.
Barral-Netto M, Barral A, Brodskyn C, Carvalho EM, Reed SG. Cytotoxicity in human mucosal and cutaneous leishmaniosis. Parasite Immunol 1995;17:21-28.
Brodskyn C, Barral A, Boaventura V, Carvalho E, Barral-Netto M. Parasite-driven in vitro human lymphocyte cytotoxicity against autologous infected macrophages from mucosal leishmaniasis. J Immunol 1997;159:4467-4473.
Antonelli L, Dutra W, Almeida R, Bacella O, Carvalho E, Gollob K. Activated inflamatory T cells correlate with lesion size in human cutaneous leishmaniasis. Immunol Lett 2005;10:1016.
Roger K, Titus R. The human cytokine response to Leishmania major early after exposure to the parasite in vitro. J Parasitol 2004;90:557-563.
Roger K, Titus R. Characterization of the early cellular immune response to Leishmania major using peripheral blood mononuclear cells from Leishmania-naïve humans. Am J Trop Med Hyg 2004;71:568-576.
Antoine J, Prina E, Lang T, Courret N. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol 1998;6:392-401.
Courret N, Frehel C, Gouhier N, Pouchelet M, Prina E, Roux P. Biogenesis of Leishmania-harbouring parasitophorous vacuoles following phagocytosis of the metacyclic promastigote or amastigote stages of the parasites. J Cell Sci 2002;115:2303-2316.
Kovacsovics-Bankowski M, Rock K. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995;267:243-246.
Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, Amigorena S. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999;1:362-368.
Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A, et al. Phagosomes are competent organelles for antigen cross-presentation. Nat 2003;425:402-406.
Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nat 2003;425:397-402.
Kaufmann S, Schaible U. Antigen presentation and recognition in bacterial infections. Curr Opin Immunol 2005;17:79-87.
Lopez J, Lebowitz J, Beverly S, Rammensee HG, Overath P. Leishmania mexicana promastigotes induce cytotoxic T lymphocytes in vivo that do not recognize infected macrophages. Eur J Immunol 1993;23:217-223.
Kima P, Ruddle N, McMahon-Pratt D. Presentation via the class I pathway by Leishmania amazonensis-infected macrophages of an endogenous leishmanial antigen to CD8 T cells. J Immunol 1997;159:1828-1834.
Fonteneau J, Kavanagh D, Lirvall M, Sanders C, Cover TL, Bhardwaj N, et al. Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood 2003;102:4448-4455.
Guermonprez P, Amigorena S. Pathways for antigen cross presentation. Springer Semin Immunopathol 2005;26:257-271.
Schaible U, Winau F, Sieling P, Fischer K, Collins HL, Hagens K, et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med 2003;9:1039-1046.
Kaufmann S. How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 2001;1:20–30.
Winau F, Kaufmann S, Schaible U. Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cell Microbiol 2004;6:599-607.
Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811.
Moore KJ, Matlashewski G. Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol 1994;152:2930-2937.
Moore KJ, Turco SJ, Matlashewski G. Leishmania donovani infection enhances macrophage viability in the absence of exogenous growth factor. J Leukoc Biol 1994;55:91-98.
Smith L, Rodrigues M, Russel D. The interaction between CD8+ cytotoxic T cells and Leishmania-infected macrophages. J Exp Med 1991;174:499-505.
Conceição F, Paes M, Modlin R, Tschopp J, Pirmez C. Is necrosis/apoptosis correlated with the evolution of cutaneous lesions in the American tegumentary leishmaniasis? Immunol Immunopathol 1998;93:101-110.
Bousoffara T, Louzir H, Salah B, Dellagi K. Analysis of granzyme B activity as a surrogate marker of Leishmania-specific cell-mediated cytotoxicity in zoonotic cutaneous leishmniasis. J Infect Dis 2004;189:1265-1273.
Conceição F, Hahne M, Schroter M, Louis J, Tschopp J. The resolution of lesions induced by Leishmania major requires a functional Fas (APO-1, CD95) pathway of cytotoxicity. Eur J Immunol 1998;28:237-245.
Eisert V, Münster U, Simon M, Moll H. The course of Leishmania major infection in mice lacking granzyme-mediated mechanisms. Immunobiology 2002;205:314-320.
Moll H, Müller C, Gillitzer R, Fuchs H, Röllinghoff M, Simon MM, et al. Expression of T-cell-associated serine proteinase 1 during murine Leishmania major infection correlates with susceptibility to disease. Infect Immun 1991;59:4701-4708.
Frischholz S, Röllinghoff M, Moll H. Cutaneous leishmaniasis: co-ordinate expression of granzyme A and lymphokines by CD4+ T cells from susceptible mice. Immunobiology 1994;82:255-261.
Alexander C, Kaye P, Engwerda C. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. Eur J Immunol 2001;31:1199-1210.
Huang FP, Xu D, Esfandiari EO, Sands W, Wei XQ, Liew FY. Mice defective in Fas are highly susceptible to Leishmania major infection despite elevated IL-12 synthesis, strong Th1 responses, and enhanced nitric oxide production. J Immunol 1998;160:4143-4147.
Russo DM, Chakrabarti P, Higgins AY. Leishmania: naive human T cells sensitized with promastigote antigen and IL-12 develop into potent Th1 and CD8+ cytotoxic effectors. Exp Parasitol 1999;93:161-170.
Eidsmo L, Nylen S, Khamesipour A, Hedblad MA, Chiodi F, Akuffo H. The contribution of the Fas/Fasl apoptotic pathway in ulcer formation during Leishmania major-induced cutaneous leishmaniasis. Am J Pathol 2005;166:1099-1108.
Stenger S. Cytolytic T cells in the immune response to Mycobacterium tuberculosis. Scand J Infect Dis 2001;33:483-487.
Kumar J, Okada S, Clayberger C, Krensky AM. Granulysin: a novel antimicrobial. Expert Opin Investig Drugs 2001;10:321-329.
Hailu A, Frommel D. Leishmaniasis. In: Kloos H, Zein ZA, eds. The ecology of health and disease in Ethiopia. Boulder, San Francisco, Oxford: Westview press, 1993:375–388.
Convit J, Ulrich M, Fernandez C, Tapia FJ, Cáceres-Dittmar G, Castés M, et al. The clinical and immunological spectrum of American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 1993;87:444-448.
Salaiza-Suazo N, Volkow P, Tamayo R, Moll H, Gillitzer R, Pérez A, et al. Treatment of two patients with diffuse cutaneous leishmaniasis caused by Leishmania mexicana modifies the immunohistological profile but not the disease outcome. Trop Med Int Health 1999;4:801-811.
Ji J, Masterson J, Sun J, Soong L. CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection. J Immunol 2005;174:7147-7153.
Kariminia A, Bourreau E, Pascalis H, Couppié P, Sainte-Marie D, Tacchini-Cottier F, et al. Transforming growth factor beta 1 production by CD4+ CD25+ regulatory T cells in peripheral blood mononuclear cells from healthy subjects stimulated with Leishmania guyanensis. Infect Immun 2005;73:5908-5914.