2024, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2024; 26 (3)
Desarrollo, caracterización y análisis de biocompatibilidad de un andamio de colágeno-hidroxiapatita para la regeneración ósea guiada
Shankar P, Arumugam P, Kannan MS
Idioma: Ingles.
Referencias bibliográficas: 32
Paginas: 161-174
Archivo PDF: 1060.36 Kb.
RESUMEN
La regeneración ósea guiada (GBR) es el tratamiento de elección para mejorar el volumen
óseo horizontal y vertical mediante injertos óseos. Las membranas GBR funcionan según el principio
de prevenir la migración epitelial hacia el espacio del defecto. La hidroxiapatita se ha utilizado
habitualmente como injerto óseo para defectos infraóseos. El estudio se realizó en el Departamento de
Biomateriales del Saveetha Dental College. Se preparó un scaffold o andamio, el cual se caracterizó
mediante microscopio electrónico de barrido (SEM), análisis de rayos X de dispersión de energía (EDAX),
radiación infrarroja por transformada de Fourier (FTIR) y análisis confocal. El andamio desarrollado
reveló propiedades propicias para la unión celular. Los análisis EDAX y FTIR mostraron el desarrollo
exitoso de la membrana de colágeno-gelatina-hidroxiapatita. El cultivo celular y el análisis confocal
revelaron una excelente biocompatibilidad con una capa homogénea de células viables. El andamio
desarrollado es una membrana biogénica con un potencial de biomineralización relevante que puede
utilizarse para aplicaciones GBR.
REFERENCIAS (EN ESTE ARTÍCULO)
Prichard J.F. The etiology, diagnosis andtreatment of the intrabony defect. J Periodontol.1967; 38 (6): 455-465.
Le Thieu M.K., Mauland E.K., Verket A.Satisfaction and preferences among patientswith both implant-supported single crownand tooth-supported fixed dental prosthesis:A pilot study. Acta Odontol Scand. 2023; 45(3): 56-58
Benic G.I., Hämmerle C.H.F. Horizontalbone augmentation by means of guided boneregeneration. Periodontol 2000. 2014; 66 (1):13-40.
Moses O., Pitaru S., Artzi Z, NemcovskyCE. Healing of dehiscence-type defectsin implants placed together with differentbarrier membranes: A comparative clinicalstudy. Clin Oral Implants Res. 2005; 16 (2):210-235.
Schwarz F., Herten M., Ferrari D., WielandM., Schmitz L., Engelhardt E., Becker J.Guided bone regeneration at dehiscencetypedefects using biphasic hydroxyapatite+ beta tricalcium phosphate (Bone Ceramic)or a collagen-coated natural bone mineral(BioOss Collagen): An immunohistochemicalstudy in dogs. Int J Oral Maxillofac Surg.2007; 36 (12): 1198-206.
Owens K.W., Yukna R.A. Collagenmembrane resorption in dogs: A comparativestudy. Implant Dent. 2001; 10 (1): 49.
Zhao S., Pinholt E.M., Madsen J.E., DonathK. Histological evaluation of different biodegradableand non-biodegradable membranesimplanted subcutaneously in rats. J CraniomaxillofacSurg. 2000; 28 (2): 116-22.
Dewi A.H., Ana I.D. The use of hydroxyapatitebone substitute grafting for alveolarridge preservation, sinus augmentation, andperiodontal bone defect: A systematic review.Heliyon. 2018; 4 (10): 78-80.
Bergese P., Hamad-Schifferli K. Nanomaterial interfaces in biology: Methods and protocols. Humana. 2016; 45 (2): 87-93
Radin S.R., Ducheyne P. Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res. 1994; 28 (11): 1303-1309.
El-Ghannam A.R. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004; 69 (3): 490-501.
Bayani M., Torabi S., Shahnaz A., Pourali M. Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature. Biotechnol Biotechnol Equip. 2017; 23 (8): 732-745.
Buser D., Dula K., Belser UC., Hirt HP., Berthold H. Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent. 1995; 15 (1): 10-29.
Kim Y.K., Ku J.K. Guided bone regeneration. J Korean Assoc Oral Maxillofac Surg. 2020; 46 (5): 361-366.
Sam G., Pillai B.R.M. Evolution of barrier membranes in periodontal regeneration-“Are the third generation membranes really here?” J Clin Diagn Res. 2014; 8 (12): 14-7.
Kim J., Lee C.M., Moon S.Y., Jeong Y.I., Kim C.S., Lee S.Y. Biomedical membrane of fish collagen/gellan gum containing bone graft materials. Materials. 2022; 15 (8): 45-49.
Mathew-Steiner S.S., Roy S., Sen C.K. Collagen in wound healing. Bioengineering (Basel). 2021; 8 (5): 67-70.
Binlateh T., Thammanichanon P., Rittipakorn P., Thinsathid N., Jitprasertwong P. Collagen-based biomaterials in periodontal regeneration: current applications and future perspectives of plant-based collagen. Biomimetics. 2022; 7 (2): 35-40.
Karamanos N.K., Theocharis A.D., Piperigkou Z., Manou D., Passi A., Skandalis S.S., et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021; 288 (24): 6850-912.
Buehler M.J. Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA. 2006; 103 (33): 12285-12290.
Lukin I., Erezuma I., Maeso L., Zarate J., Desimone MF., Al-Tel TH, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics. 2022; 14 (6): 43-47.
Capati M.L.F., Nakazono A., Yamamoto K., Sugimoto K., Yanagiguchi., Yamada S., et al. Fish collagen promotes the expression of genes related to osteoblastic activity. Int J Polym Sci. 2016; 35 (4): 65-69.
Loiselle A.E., Wei L., Faryad M., Paul E.M., Lewis G.S., Gao J., et al. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. Tissue Eng Part A. 2013; 19 (15): 1704-1709.
Abdelaziz D., Hefnawy A., Al-Wakeel E., El-Fallal A., El-Sherbiny I.M. New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. J Adv Res. 2020; 28: 51-62.
Yang F., Both S.K., Yang X., Walboomers XF., Jansen JA. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomater. 2009; 5 (9): 3295-3304.
Behring J., Junker R., Walboomers X.F., Chessnut B., Jansen J.A. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration ofcells cultured on collagen barrier membranes.A systematic review. Odontology. 2008;96 (1): 1-11.
Sayed M.E., Mugri M.H., Almasri M.A.,Al-Ahmari M.M., Bhandi S., MadapusiT.B., et al. Role of stem cells in augmentingdental implant osseointegration: A systematicreview. Coat World. 2021; 11 (9): 1035.
Caballé-Serrano J., Munar-Frau A., DelgadoL., Pérez R., Hernández-Alfaro F. Physicochemicalcharacterization of barrier membranesfor bone regeneration. J Mech BehavBiomed Mater. 2019; 97: 13-20.
Kim J.Y., Park J.B. Various coated barriermembranes for better guided bone regeneration:A review. Coat World. 2022; 12 (8):1059-1060.
Chu C., Deng J., Man Y., Qu Y. Evaluationof nanohydroxyapaptite (nano-HA) coatedepigallocatechin-3-gallate (EGCG) crosslinkedcollagen membranes. Mater Sci Eng CMater Biol Appl. 2017; 78: 258-264.
Higuchi J., Fortunato G., Woźniak B., ChodaraA., Domaschke S., Męczyńska-Wielgosz S.,et al. Polymer membranes sonocoated andelectrosprayed with nano-hydroxyapatite forperiodontal tissues regeneration. Nanomaterials.2019; 9 (11): 1552-1559.
Gavinho S.R., Pádua A.S., Sá-Nogueira I.,Silva J.C., Borges J.P., Costa L.C., et al. Fabrication,structural and biological characterizationof zinc-containing bioactive glasses andtheir use in membranes for guided bone regeneration.Materials. 2023; 16 (3): 1625-1630.