2024, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2024; 26 (3)
Análisis comparativo de células troncales de origen dental de un donador: diferencias en la diferenciación adipogénica y su perfil protéico
Marín-Uc JA, Aguilar-Hernández V, Hernández-Sotomayor T, Brito Argáez L, Nic-Can GI, Chuc-Gamboa MG, Aguilar-Ayala F, Aguilar-Pérez F, Rodas-Junco BA
Idioma: Ingles.
Referencias bibliográficas: 57
Paginas: 123-139
Archivo PDF: 602.42 Kb.
RESUMEN
Las células troncales dentales (CTDs) son células multipotentes con gran capacidad de proliferación y diferenciación multilinaje. Pocos estudios han comparado las características celulares y el potencial de diferenciación adipogénica de las CTDs derivadas de tejidos de un mismo individuo. El objetivo de este trabajo fue evaluar las diferencias en las características de crecimiento, la expresión de marcadores específicos de celulas troncales mesenquimales (CTMs) y el perfil de proteínas en respuesta a la diferenciación adipogénica, de células de pulpa dental y ligamento periodontal obtenidas de un mismo donante. Las células dentales se aislaron a partir del tercer molar de un único donante mediante el método de explante. Para obtener la curva de proliferación de las células se evaluó mediante análisis con azul tripano. Tras cultivar las células en medio adipogénico, se controlaron los cambios morfológicos mediante tinción con rojo O oleoso, así como los marcadores adipogénicos PPARγ y adiponectina mediante RT-qPCR. Por último, se realizó una electroforesis bidimensional de las proteínas aisladas de estas células para analizar el perfil proteómico. Los dos tipos de CTDs comparten características celulares similares; sin embargo, su capacidad de diferenciación adipogénica es diferente. Basándonos en los resultados del perfil proteico, identificamos cinco proteínas expresadas diferencialmente entre ambos tipos de células troncales. Los resultados mostraron que las células troncales de la pulpa dental y del ligamento periodontal de un mismo donante tienen características celulares similares pero una respuesta diferente a la adipogénesis, lo que explicaría las diferencias en la expresión de sus proteinas.
REFERENCIAS (EN ESTE ARTÍCULO)
Rodas-Junco B.A., Canul-Chan M., Rojas-Herrera R.A., De-la-Peña C., Nic-Can G.I. Stem cells from dental pulp: what epigenetics can do with your tooth. Front Physiol. 2017; 8: 999.
Bansal R., Jain A. Current overview on dental stem cells applications in regenerative dentistry. J Nat Sci Biol Med. 2015; 6 (1): 29.
Sarjeant K., Stephens J.M. Adipogenesis. Cold Spring Harb Perspect Biol. 2012; 4 (9): a008417.
Lee H., Lee B., Park S., Kim C. The proteomic analysis of an adipocyte differentiated from human mesenchymal stem cells using two-dimensional gel electrophoresis. Proteomics. 2006; 6 (4): 1223-9.
Zhuang W., Ge X., Yang S., Huang M., Zhuang W., Chen P., et al. Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells. 2015; 33 (6): 1985-97.
Khurshid Z., Zohaib S., Najeeb S., Zafar M.S., Rehman R., Rehman I.U. Advances of proteomic sciences in dentistry. Int J Mol Sci. 2016;17 (5): 728.
Li L., Zuo Y., Zou Q., Yang B., Lin L., Li J., et al. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO–PU Composite Scaffold for Bone Regeneration. ACS Appl Mater Interfaces [Internet]. 2015;151002103911000. Available from: http://pubs.acs.org/doi/10.1021/acsami.5b07327
DeLany J.P., Floyd Z.E., Zvonic S., Smith A., Gravois A., Reiners E., et al. Proteomic Analysis of Primary Cultures of Human Adipose-derived Stem Cells: Modulation by Adipogenesis* S. Mol Cell Proteomics. 2005; 4 (6): 731-40.
Lo T., Tsai C.-F, Shih Y.-R.V., Wang Y.-T., Lu S.-C., Sung T.-Y., et al. Phosphoproteomic analysis of human mesenchymal stromal cells during osteogenic differentiation. J Proteome Res. 2012; 11 (2): 586-98.
Jeong J.A., Ko K., Park H.S., Lee J., Jang C., Jeon C., et al. Membrane proteomic analysis of human mesenchymal stromal cells during adipogenesis. Proteomics. 2007; 7 (22): 4181-91.
Pelaez-Garcia A., Barderas R., Batlle R., Vinas-Castells R., Bartolome R.A., Torres S., et al. A proteomic analysis reveals that Snail regulates the expression of the nuclear orphan receptor Nuclear Receptor Subfamily 2 Group F Member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Mol Cell Proteomics. 2015; 14 (2): 303-15.
Guerrero-Jiménez M., Nic-Can G.I., Castro-Linares N., Aguilar-Ayala F.J., Canul-Chan M., Rojas-Herrera R.A., et al. In vitro histomorphometric comparison of dental pulp tissue in different teeth. PeerJ. 2019; 7: e8212.
Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977; 83 (2): 346-56.
Zuk P.A. The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell. 2010; 21 (11): 1783-7.
Zhang X., Liu J., Liang X., Chen J., Hong J., Li L., et al. History and progression of Fat cadherins in health and disease. Onco Targets Ther. 2016; 9: 7337.
Chakrabarty R.P., Chandel N.S. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 2021; 28 (3): 394-408.
Zhou D., Gan L., Peng Y., Zhou Y., Zhou X., Wan M., et al. Epigenetic regulation of dental pulp stem cell fate. Stem Cells Int. 2020; 2020: 8876265
Li B., Ouchi T., Cao Y., Zhao Z., Men Y. Dental-derived mesenchymal stem cells: state of the art. Front Cell Dev Biol. 2021; 9: 654559.
Drela K., Stanaszek L., Nowakowski A., Kuczynska Z, Lukomska B. Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int. 2019; 6: 7012692
Mercado-Rubio M.D., Pérez-Argueta E., Zepeda-Pedreguera A., Aguilar-Ayala F.J., Peñaloza-Cuevas R., Kú-González A., et al. Similar Features, Different Behaviors: A Comparative In Vitro Study of the Adipogenic Potential of Stem Cells from Human Follicle, Dental Pulp, and Periodontal Ligament. J Pers Med. 2021; 11 (8): 738.
Kotova A.V., Lobov A.A., Dombrovskaya J.A., Sannikova V.Y., Ryumina N.A., Klausen P., et al. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, OsteogenicDifferentiation and Proteome. Biomedicines. 2021; 9 (11): 1606.
Navabazam A.R., Sadeghian Nodoshan F.,Sheikhha M.H., Miresmaeili S.M., SoleimaniM., Fesahat F. Characterization of mesenchymal stem cells from human dental pulp,preapical follicle and periodontal ligament.Iran J Reprod Med. 2013 Mar; 11 (3): 235-42.
Frank D., Cser A., Kolarovszki B., Farkas N.,Miseta A., Nagy T. Mechanical stress altersprotein O-GlcNAc in human periodontalligament cells. J Cell Mol Med. 2019; 23 (9):6251-9.
Chukkapalli S.S., Lele T.P. Periodontal cellmechanotransduction. Open Biol. 2018; 8(9): 180053.
Trubiani O., Zalzal S.F., Paganelli R.,Marchisio M., Giancola R., PizzicannellaJ., et al. Expression profile of the embryonicmarkers nanog, OCT-4, SSEA-1, SSEA-4,and frizzled-9 receptor in human periodontal ligament mesenchymal stem cells. J CellPhysiol. 2010; 225 (1): 123-31.
Tatullo M., Marrelli M., Shakesheff K.M.,White L.J. Dental pulp stem cells: function,isolation and applications in regenerativemedicine. J Tissue Eng Regen Med. 2015; 9(11): 1205-16.
Silvério K.G., Rodrigues T.L., Coletta R.Dela, Benevides L., Da Silva J.S., CasatiM.Z., et al. Mesenchymal stem cell propertiesof periodontal ligament cells from deciduousand permanent teeth. J Periodontol. 2010; 81(8): 1207-15.
Jang J.Y., Park S.H., Park J.H., Lee B.K., YunJ.H., Lee B., et al. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem CellsEmbedded in an Injectable In Vivo-FormingHydrogel. Macromol Biosci. 2016; 1158-69.
Miletić M., Mojsilović S., Okić-ĐorđevićI., Kukolj T., Jauković A., Santibanez J., etal. Mesenchymal stem cells isolated fromhuman periodontal ligament. Arch Biol Sci.2014; 66 (1): 261-71.
Piva E., Tarlé S.A., Nör J.E., Zou D., HatfieldE., Guinn T., et al. Dental pulp tissue regeneration using dental pulp stem cells isolatedand expanded in human serum. J Endod.2017; 43 (4): 568-74.
Diomede F., Rajan T.S., Gatta V., D’AuroraM., Merciaro I., Marchisio M., et al. Stemnessmaintenance properties in human oral stemcells after long-term passage. Stem Cells Int.2017: 5651287.
Duff S.E., Li C., Garland J.M., KumarS. CD105 is important for angiogenesis:evidence and potential applications. FASEBJ. 2003; 17 (9): 984-92.
Saghiri M.A., Asatourian A., Sorenson C.M.,Sheibani N. Mice dental pulp and periodontal ligament endothelial cells exhibit differentproangiogenic properties. Tissue Cell. 2018;50: 31-6.
Tsai C.-C., Su P.-F., Huang Y.-F., Yew T.-L.,Hung S.-C. Oct4 and Nanog directly regulateDnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells.Mol Cell. 2012; 47 (2): 169-82.
Kawanabe N., Murata S., Murakami K.,Ishihara Y., Hayano S., Kurosaka H., et al.Isolation of multipotent stem cells in humanperiodontal ligament using stage-specificembryonic antigen-4. Differentiation. 2010;79 (2): 74-83.
Ponnaiyan D., Jegadeesan V. Comparison ofphenotype and differentiation marker geneexpression profiles in human dental pulp andbone marrow mesenchymal stem cells. Eur JDent. 2014; 8 (03): 307-13.
Pierantozzi E., Gava B., Manini I., RovielloF., Marotta G., Chiavarelli M., et al. Pluripotency regulators in human mesenchymalstem cells: expression of NANOG but not ofOCT-4 and SOX-2. Stem Cells Dev. 2011; 20(5): 915-23.
Greco S.J., Liu K., Rameshwar P. Functionalsimilarities among genes regulated by OCT4in human mesenchymal and embryonic stemcells. Stem Cells. 2007; 25 (12): 3143-54.
Trivanović D., Jauković A., Popović B.,Krstić J., Mojsilović S., Okić-Djordjević I.,et al. Mesenchymal stem cells of differentorigin: comparative evaluation of proliferative capacity, telomere length and pluripotency marker expression. Life Sci. 2015; 141:61-73.
Volponi A.A., Gentleman E., Fatscher R.,Pang Y.W.Y., Gentleman M.M., Sharpe P.T.Composition of mineral produced by dentalmesenchymal stem cells. J Dent Res. 2015;94 (11): 1568-74.
Okajcekova T., Strnadel J., Pokusa M.,Zahumenska R., Janickova M., HalasovaE., et al. A comparative in vitro analysis ofthe osteogenic potential of human dentalpulp stem cells using various differentiationconditions. Int J Mol Sci. 2020; 21 (7): 2280.
Korkmaz Y., Imhof T., Kaemmerer P.W.,Bloch W., Rink-Notzon S., Moest T., et al.The colocalizations of pulp neural stem cellsmarkers with dentin matrix protein-1, dentinsialoprotein and dentin phosphoprotein inhuman denticle (pulp stone) lining cells. AnnAnatomy-Anatomischer Anzeiger. 2022;239: 151815.
James A.W. Review of signaling pathwaysgoverning MSC osteogenic and adipogenicdifferentiation. Scientifica (Cairo). 2013:684736.
Kolar M.K., Itte V.N., Kingham P.J., NovikovL.N., Wiberg M., Kelk P. The neurotrophiceffects of different human dental mesenchymal stem cells. Sci Rep. 2017; 7 (1): 1-12.
Monterubbianesi R., Bencun M., Pagella P.,Woloszyk A., Orsini G., Mitsiadis T.A. Acomparative in vitro study of the osteogenicand adipogenic potential of human dental pulpstem cells, gingival fibroblasts and foreskinfibroblasts. Sci Rep. 2019; 9 (1):1-13.
Shen W.-C., Lai Y.-C., Li L.-H., Liao K.,Lai H.-C., Kao S.-Y., et al. Methylation andPTEN activation in dental pulp mesenchymalstem cells promotes osteogenesis and reducesoncogenesis. Nat Commun. 2019; 10 (1): 1-13.
Fracaro L., Senegaglia A.C., Herai R.H.,Leitolis A., Boldrini-Leite L.M., RebelattoC.L.K., et al. The expression profile of dentalpulp-derived stromal cells supports theirlimited capacity to differentiate into adipogenic cells. Int J Mol Sci. 2020; 21 (8): 2753.
Xing Y., Zhang Y., Wu X., Zhao B., Ji Y., XuX. A comprehensive study on donor-matchedcomparisons of three types of mesenchymal stem cells-containing cells from humandental tissue. J Periodontal Res. 2019; 54 (3):286-99.
Um S., Choi J., Lee J., Zhang Q., Seo B.M.Effect of leptin on differentiation of humandental stem cells. Oral Dis. 2011; 17 (7):662-9.
Argaez-Sosa A.A., Rodas-Junco B.A., Carrillo-Cocom L.M., Rojas-Herrera R.A., CoralSosa A., Aguilar-Ayala F.J., et al. Higher Expression of DNA (de) methylation-Related GenesReduces Adipogenicity in Dental Pulp StemCells. Front cell Dev Biol. 2022; 10: 791667
Li Y.-D., Lv Z., Zhu W-F. RBBP4 promotes colon cancer malignant progression viaregulating Wnt/β-catenin pathway. World JGastroenterol. 2020; 26 (35): 5328.
Christodoulides C., Lagathu C,. Sethi J.K.,Vidal-Puig A. Adipogenesis and WNT signalling. Trends Endocrinol Metab. 2009; 20 (1):16-24.
Prestwich T.C., MacDougald O.A. Wnt/βcatenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol. 2007; 19 (6): 612-7.
De Winter T.J.J., Nusse R. Running againstthe Wnt: How Wnt/β-catenin suppressesadipogenesis. Front Cell Dev Biol. 2021; 9: 627429.
Shi H., DiRienzo D., Zemel M.B. Effects ofdietary calcium on adipocyte lipid metabo-lism and body weight regulation in energyrestricted aP2-agouti transgenic mice. FASEBJ. 2001; 15 (2): 291-3.
Gherardi G., Monticelli H., Rizzuto R.,Mammucari C. The mitochondrial Ca2+uptake and the fine-tuning of aerobic metabolism. Front Physiol. 2020; 11: 554904.
Zhao J., Zhou A., Qi W. The Potential toFight Obesity with Adipogenesis ModulatingCompounds. Int J Mol Sci. 2022; 23 (4): 2299.