2024, Número 4
<< Anterior
Cardiovasc Metab Sci 2024; 35 (4)
Disfunción de macrófagos y su impacto en la enfermedad del hígado graso
Pinto-García LJ, Nájera N, Flores-Estrada JJ, Cáceres-Carranza FJ
Idioma: Inglés [English version]
Referencias bibliográficas: 74
Paginas: 157-167
Archivo PDF: 485.47 Kb.
RESUMEN
La enfermedad del hígado graso no alcohólico (NAFLD, por sus siglas en inglés) es una enfermedad global prevalente, que afecta al menos a un tercio de la población mundial y tiene una prevalencia estimada que podría ser mayor al 50% en México. La NAFLD varía desde la esteatosis simple hasta la esteatohepatitis no alcohólica (NASH, por sus siglas en inglés), fibrosis y cirrosis, generalmente asociadas con trastornos metabólicos como obesidad, diabetes tipo 2 y enfermedad cardiovascular. Los macrófagos juegan un papel crítico en la NAFLD, contribuyendo a la inflamación, fibrosis y progresión de la enfermedad. Las células de Kupffer, macrófagos hepáticos especializados, son esenciales para la salud del hígado y la regulación inmunológica, pero se vuelven disfuncionales en la NAFLD. Exhiben un comportamiento dinámico, responden a diversos estímulos y contribuyen a la inflamación y fibrosis del hígado a través de la secreción de citocinas y vías de señalización como el factor nuclear potenciador de la cadena ligera kappa de las células B activadas (NF-κB) y el receptor gamma activado por el proliferador de peroxisomas (PPAR-γ). La activación crónica de los macrófagos en la NAFLD está influenciada por factores como los ácidos grasos saturados, lo que lleva a la polarización del fenotipo M1 y promueve la inflamación. Actualmente, no existen medicamentos aprobados por la FDA que se dirijan específicamente a la disfunción de los macrófagos. Sin embargo, se están investigando varios enfoques terapéuticos que pueden influir indirectamente en la activación de los macrófagos y una mayor polarización para suprimir la inflamación y prevenir la progresión de la enfermedad. Las estrategias prometedoras incluyen la modificación de esta polarización de los macrófagos y la focalización en vías de señalización específicas. La focalización de quimiocinas como la quimiocina ligando 16 (CXCL16) también puede reducir potencialmente la inflamación hepática y la esteatohepatitis. La focalización de la activación de los macrófagos hepáticos ofrece un enfoque prometedor para mitigar la progresión de la NAFLD.
REFERENCIAS (EN ESTE ARTÍCULO)
Bernal-Reyes R, Castro-Narro G, Malé-Velázquez R, Carmona-Sánchez R, González-Huezo MS, García-Juárez I et al. The Mexican consensus on nonalcoholic fatty liver disease. Rev Gastroenterol Mex. 2019; 84 (1): 69-99.
Wong C, Lee MH, Yaow CYL, Chin YH, Goh XL, Ng CH et al. Glucagon-like peptide-1 receptor agonists for non-alcoholic fatty liver disease in type 2 diabetes: a meta-analysis. Front Endocrinol (Lausanne). 2021; 12: 609110. doi: 10.3389/fendo.2021.609110.
Taheri H, Malek M, Ismail-Beigi F, Zamani F, Sohrabi M, Reza Babaei M et al. Effect of empagliflozin on liver steatosis and fibrosis in patients with non-alcoholic fatty liver disease without diabetes: a randomized, double-blind, placebo-controlled trial. Adv Ther. 2020; 37 (11): 4697-4708. doi: 10.1007/s12325-020-01498-5.
Jeong HG, Park H. Metabolic disorders in menopause. Metabolites. 2022; 12 (10): 954. doi: 10.3390/metabo12100954.
Abrams GA, Ware D, Byrne MM, Hecht EM. Risk stratification of adolescents for the screening of non-alcoholic fatty liver disease. Pediatr Obes. 2022; 17 (9): e12924. doi: 10.1111/ijpo.12924.
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014; 14 (6): 392-404. doi: 10.1038/nri3671.
Mass E, Nimmerjahn F, Kierdorf K et al. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat Rev Immunol. 2023; 23: 563-579. doi: 10.1038/s41577-023-00848-y.
Kerr CJ, Waterworth SP, Brodie D, Sandercock GRH, Ingle L. The associations between physical activity intensity, cardiorespiratory fitness, and non-alcoholic fatty liver disease. J Gastroenterol Hepatol. 2021; 36 (12): 3508-3514. doi: 10.1111/jgh.15672.
Zhang M, Liu HL, Huang K, Peng Y, Tao YY, Zhao CQ et al. Fuzheng Huayu recipe prevented and treated CCl4-induced mice liver fibrosis through regulating polarization and chemotaxis of intrahepatic macrophages via CCL2 and CX3CL1. Evid Based Complement Alternat Med. 2020; 2020: 8591892. doi: 10.1155/2020/8591892.
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012; 336 (6077): 86-90. doi: 10.1126/science.1219179.
McCuskey RS, McCuskey PA. Fine structure and function of Kupffer cells. J Electron Microsc Tech. 1990; 14 (3): 237-246. doi: 10.1002/jemt.1060140305.
Xia S, Guo Z, Xu X, Yi H, Wang Q, Cao X. Hepatic microenvironment programs hematopoietic progenitor differentiation into regulatory dendritic cells, maintaining liver tolerance. Blood. 2008; 112 (8): 3175-3185. doi: 10.1182/blood-2008-05-159921.
Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol. 2016; 13 (3): 316-327. doi: 10.1038/cmi.2015.104.
Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ, Florido M et al. A liver capsular network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity. 2017; 47 (2): 374-388.e6. doi: 10.1016/j.immuni.2017.07.018.
Balog S, Li Y, Ogawa T, Miki T, Saito T, French SW et al. Development of capsular fibrosis beneath the liver surface in humans and mice. Hepatology. 2020; 71 (1): 291-305. doi: 10.1002/hep.30809.
Puengel T, Krenkel O, Kohlhepp M, Lefebvre E, Luedde T, Trautwein C et al. Differential impact of the dual CCR2/CCR5 inhibitor cenicriviroc on migration of monocyte and lymphocyte subsets in acute liver injury. PLoS One. 2017; 12 (9): e0184694. doi: 10.1371/journal.pone.0184694.
Lee YS, Kim MH, Yi HS, Kim SY, Kim HH, Kim JH et al. CX3CR1 differentiates F4/80low monocytes into pro-inflammatory F4/80high macrophages in the liver. Sci Rep. 2018; 8 (1): 15076. doi: 10.1038/s41598-018-33440-9.
Kai T, Kim Y, Kitamura H, Kawano K, Kitano S. Cyclosporine overcomes cold preservation/reperfusion injury of liver graft: Chemokine release and liver ultrastructure. J Hep Bil Pancr Surg. 1997; 4: 423-430. doi: 10.1007/BF02488976.
Kuriwaki K, Yoshida H. Morphological characteristics of lipid accumulation in liver-constituting cells of acid lipase deficiency rats (Wolman's disease model rats). Pathol Int. 1999; 49 (4): 291-297. doi: 10.1046/j.1440-1827.1999.00862.x.
Arsad SS, Esa NM, Hamzah H. Histopathologic changes in liver and kidney tissues from male sprague dawley rats treated with rhaphidophora decursiva (Roxb.) schott extract. J Cytol Histol. 2014; S4: 001. doi: 10.4172/2157-7099.S4-001.
Su L, Li N, Tang H, Lou Z, Chong X, Zhang C et al. Kupffer cell-derived TNF-α promotes hepatocytes to produce CXCL1 and mobilize neutrophils in response to necrotic cells. Cell Death Dis. 2018; 9 (3): 323. doi: 10.1038/s41419-018-0377-4.
Rizzardini M, Zappone M, Villa P, Gnocchi P, Sironi M, Diomede L et al. Kupffer cell depletion partially prevents hepatic heme oxygenase 1 messenger RNA accumulation in systemic inflammation in mice: role of interleukin 1beta. Hepatology. 1998; 27 (3): 703-710. doi: 10.1002/hep.510270311.
Jiang LQ, Wang TY, Wang Y, Wang ZY, Bai YT. Co-disposition of chitosan nanoparticles by multi types of hepatic cells and their subsequent biological elimination: the mechanism and kinetic studies at the cellular and animal levels. Int J Nanomedicine. 2019; 14: 6035-6060. doi: 10.2147/IJN.S208496.
Diehl KL, Vorac J, Hofmann K, Meiser P, Unterweger I, Kuerschner L et al. Kupffer cells sense free fatty acids and regulate hepatic lipid metabolism in high-fat diet and inflammation. Cells. 2020; 9 (10): 2258. doi: 10.3390/cells9102258.
Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol. 2007; 22 Suppl 1: S73-S78.
Lacotte S, Slits F, Orci LA, Meyer J, Oldani G, Delaune V et al. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma. Oncoimmunology. 2016; 5 (11): e1234565. doi: 10.1080/2162402X.2016.1234565.
Su GL, Goyert SM, Fan MH, Aminlari A, Gong KQ, Klein RD et al. Activation of human and mouse Kupffer cells by lipopolysaccharide is mediated by CD14. Am J Physiol Gastrointest Liver Physiol. 2002; 283 (3): G640-G645. doi: 10.1152/ajpgi.00253.2001.
Satoh D, Yagi T, Nagasaka T, Shinoura S, Umeda Y, Yoshida R et al. CD14 upregulation as a distinct feature of non-alcoholic fatty liver disease after pancreatoduodenectomy. World J Hepatol. 2013; 5 (4): 189-195. doi: 10.4254/wjh.v5.i4.189.
MacParland SA, Tsoi KM, Ouyang B, Ma XZ, Manuel J, Fawaz A et al. Phenotype determines nanoparticle uptake by human macrophages from liver and blood. ACS Nano. 2017; 11 (3): 2428-2443. doi: 10.1021/acsnano.6b06245.
Shimizu J, Murao A, Lee Y, Aziz M, Wang P. Extracellular CIRP promotes Kupffer cell inflammatory polarization in sepsis. Front Immunol. 2024; 15: 1411930. doi: 10.3389/fimmu.2024.1411930.
Jin R, Banton S, Tran VT, Konomi JV, Li S, Jones DP et al. Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study. J Pediatr. 2016; 172: 14-19.e5. doi: 10.1016/j.jpeds.2016.01.026.
Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018; 24 (7): 908-922. doi: 10.1038/s41591-018-0104-9.
Zhu W, Sahar NE, Javaid HMA, Pak ES, Liang G, Wang Y et al. Exercise-induced irisin decreases inflammation and improves NAFLD by competitive binding with MD2. Cells. 2021; 10 (12): 3306. doi: 10.3390/cells10123306.
Sakamoto Y, Yoshio S, Doi H, Kawai H, Shimagaki T, Mori T et al. Serum soluble sialic acid-binding immunoglobulin-like lectin-7 concentration as an indicator of liver macrophage activation and advanced fibrosis in patients with non-alcoholic fatty liver disease. Hepatol Res. 2020; 50 (4): 466-477. doi: 10.1111/hepr.13464.
Wang YT, Wang FF, Li H, Xu JY, Lu XL, Wang Y. Deletion of the PPARδ gene exacerbates high-fat diet-induced nonalcoholic fatty liver disease in mice through the gut-liver axis. Cell Mol Biol (Noisy-le-grand). 2023; 69 (10): 121-128. doi: 10.14715/cmb/2023.69.10.17.
Carbajo-Pescador S, Porras D, García-Mediavilla MV, Martínez-Flórez S, Juarez-Fernández M, Cuevas MJ et al. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Dis Model Mech. 2019; 12 (5): dmm039206. doi: 10.1242/dmm.039206.
Carpino G, Overi D, Onori P, Franchitto A, Cardinale V, Alvaro D et al. Effect of calcium-sulphate-bicarbonate water in a murine model of non-alcoholic fatty liver disease: a histopathology study. Int J Mol Sci. 2022; 23 (17): 10065. doi: 10.3390/ijms231710065.
Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology. 2016; 63 (3): 764-775. doi: 10.1002/hep.28356.
Luo W, Xu Q, Wang Q, Wu H, Hua J. Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep. 2017; 7: 44612. doi: 10.1038/srep44612.
Higashiyama M, Tomita K, Sugihara N, Nakashima H, Furuhashi H, Nishikawa M et al. Chitinase 3-like 1 deficiency ameliorates liver fibrosis by promoting hepatic macrophage apoptosis. Hepatol Res. 2019; 49 (11): 1316-1328. doi: 10.1111/hepr.13396.
Wu HM, Ni XX, Xu QY, Wang Q, Li XY, Hua J. Regulation of lipid-induced macrophage polarization through modulating peroxisome proliferator-activated receptor-gamma activity affects hepatic lipid metabolism via a Toll-like receptor 4/NF-κB signaling pathway. J Gastroenterol Hepatol. 2020; 35 (11): 1998-2008. doi: 10.1111/jgh.15025.
Wu T, Zhang C, Shao T, Chen J, Chen D. The role of NLRP3 inflammasome activation pathway of hepatic macrophages in liver ischemia-reperfusion injury. Front Immunol. 2022; 13: 905423. doi: 10.3389/fimmu.2022.905423.
Primiano MJ, Lefker BA, Bowman MR, Bree AG, Hubeau C, Bonin PD et al. Efficacy and pharmacology of the NLRP3 inflammasome inhibitor CP-456,773 (CRID3) in murine models of dermal and pulmonary inflammation. J Immunol. 2016; 197 (6): 2421-2433. doi: 10.4049/jimmunol.1600035.
Hao YY, Cui WW, Gao HL, Wang MY, Liu Y, Li CR et al. Jinlida granules ameliorate the high-fat-diet induced liver injury in mice by antagonising hepatocytes pyroptosis. Pharm Biol. 2022; 60 (1): 274-281. doi: 10.1080/13880209.2022.2029501.
Chen Y, Gan Y, Zhong H, Liu Y, Huang J, Wang W et al. Gut microbe and hepatic macrophage polarization in non-alcoholic fatty liver disease. Front Microbiol. 2023; 14: 1285473. doi: 10.3389/fmicb.2023.1285473.
Ni XX, Ji PX, Chen YX, Li XY, Sheng L, Lian M et al. Regulation of the macrophage-hepatic stellate cell interaction by targeting macrophage peroxisome proliferator-activated receptor gamma to prevent non-alcoholic steatohepatitis progression in mice. Liver Int. 2022; 42 (12): 2696-2712. doi: 10.1111/liv.15441.
Zhenyu L, Ying W, Zhuang T, Yongchao X, Kim J. Exercise-mediated macrophage polarization modulates the targeted therapeutic effect of NAFLD: a review. Phys Act Nutr. 2023; 27 (3): 10-16. doi: 10.20463/pan.2023.0023.
O'Gorman P, Naimimohasses S, Monaghan A, Kennedy M, Melo AM, Ní Fhloinn D et al. Improvement in histological endpoints of MAFLD following a 12-week aerobic exercise intervention. Aliment Pharmacol Ther. 2020; 52 (8): 1387-1398. doi: 10.1111/apt.15989.
Huber Y, Gehrke N, Biedenbach J, Helmig S, Simon P, Straub BK et al. Voluntary distance running prevents TNF-mediated liver injury in mice through alterations of the intrahepatic immune milieu. Cell Death Dis. 2017; 8 (6): e2893. doi: 10.1038/cddis.2017.266.
Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011; 60 (9): 1278-1283. doi: 10.1136/gut.2011.242073.
Jin G, Yao X, Liu D, Zhang J, Zhang X, Yang Y et al. Inducible nitric oxide synthase accelerates nonalcoholic fatty liver disease progression by regulating macrophage autophagy. Immun Inflamm Dis. 2023; 11 (12): e1114. doi: 10.1002/iid3.1114.
Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ et al. SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab. 2010; 298 (3): E419-E428. doi: 10.1152/ajpendo.00417.2009.
Ribaric S. Diet and aging. Oxid Med Cell Longev. 2012; 2012: 741468. doi: 10.1155/2012/741468.
Cui M, Yu H, Wang J, Gao J, Li J. Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J Diabetes Res. 2013; 2013: 852754. doi: 10.1155/2013/852754.
Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJ, Puleston DJ et al. Autophagy controls acquisition of aging features in macrophages. J Innate Immun. 2015; 7 (4): 375-391. doi: 10.1159/000370112.
Salley TN, Mishra M, Tiwari S, Jadhav A, Ndisang JF. The heme oxygenase system rescues hepatic deterioration in the condition of obesity co-morbid with type-2 diabetes. PLoS One. 2013; 8 (11): e79270. doi: 10.1371/journal.pone.0079270.
Lefere S, Tacke F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Rep. 2019; 1 (1): 30-43. doi: 10.1016/j.jhepr.2019.02.004.
Wettstein G, Luccarini JM, Poekes L, Faye P, Kupkowski F, Adarbes V et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol Commun. 2017; 1 (6): 524-537. doi: 10.1002/hep4.1057.
Kemmerer M, Finkernagel F, Cavalcante MF, Abdalla DS, Müller R, Brüne B et al. AMP-activated protein kinase interacts with the peroxisome proliferator-activated receptor delta to induce genes affecting fatty acid oxidation in human macrophages. PLoS One. 2015; 10 (6): e0130893. doi: 10.1371/journal.pone.0130893.
Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs. 2018; 27 (3): 301-311. doi: 10.1080/13543784.2018.1442436.
Roeb E. Non-alcoholic fatty liver diseases: current challenges and future directions. Ann Transl Med. 2021; 9 (8): 726. doi: 10.21037/atm-20-3760.
Zhang W, Lang R. Macrophage metabolism in nonalcoholic fatty liver disease. Front Immunol. 2023; 14: 1257596. doi: 10.3389/fimmu.2023.1257596.
Ahmed NR, Kulkarni VV, Pokhrel S, Akram H, Abdelgadir A, Chatterjee A et al. Comparing the efficacy and safety of obeticholic acid and semaglutide in patients with non-alcoholic fatty liver disease: a systematic review. Cureus. 2022; 14 (5): e24829. doi: 10.7759/cureus.24829.
Liu J, Sun J, Yu J, Chen H, Zhang D, Zhang T et al. Gut microbiome determines therapeutic effects of oca on NAFLD by modulating bile acid metabolism. NPJ Biofilms Microbiomes. 2023; 9 (1). doi: 10.1038/s41522-023-00399-z.
Li J, Li T. Bile acid receptors link nutrient sensing to metabolic regulation. Liver Res. 2017; 1 (1): 17-25. doi: 10.1016/j.livres.2017.04.001.
Goto T, Ichii M, Suganami T, Kanai S, Shirakawa I, Sakai T et al. Obeticholic acid protects against hepatocyte death and liver fibrosis in a murine model of nonalcoholic steatohepatitis. Sci Rep. 2018; 8: 8157. doi: 10.1038/s41598-018-26383-8.
Feng R, Ma LJ, Wang M, Liu C, Yang R, Su H et al. Oxidation of fish oil exacerbates alcoholic liver disease by enhancing intestinal dysbiosis in mice. Commun Biol. 2020; 3 (1): 481. doi: 10.1038/s42003-020-01213-8.
Liu XL, Pan Q, Cao HX, Xin FZ, Zhao ZH, Yang RX et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/Forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology. 2020; 72 (2): 454-469. doi: 10.1002/hep.31050.
Wehr A, Baeck C, Ulmer F, Gassler N, Hittatiya K, Luedde T et al. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PLoS One. 2014; 9 (11): e112327. doi: 10.1371/journal.pone.0112327.
Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L, Martin C et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J Immunol. 2013; 190 (10): 5226-5236. doi: 10.4049/jimmunol.1202909.
Wan Y, Mao M, Li M, Liu J, Tong X, Wang J et al. Serum CXCL16: A new predictor of liver inflammation in patients with chronic hepatitis B. J Viral Hepat. 2024; 31 (2): 107-119. doi: 10.1111/jvh.13905.
Jiang L, Yang M, Li X, Wang Y, Zhou G, Zhao J. CXC motif ligand 16 promotes nonalcoholic fatty liver disease progression via hepatocyte-stellate cell crosstalk. J Clin Endocrinol Metab. 2018; 103 (11): 3974-3985. doi: 10.1210/jc.2018-00762.
Nagata N, Chen G, Xu L, Ando H. An update on the chemokine system in the development of NAFLD. Medicina (Kaunas). 2022; 58 (6): 761. doi: 10.3390/medicina58060761.
Reid DT, Reyes JL, McDonald BA, Vo T, Reimer RA, Eksteen B. Kupffer cells undergo fundamental changes during the development of experimental NASH and are critical in initiating liver damage and inflammation. PLoS One. 2016; 11 (7): e0159524. doi: 10.1371/journal.pone.0159524.