2024, Número 1
<< Anterior Siguiente >>
Neumol Cir Torax 2024; 83 (1)
Moduladores de la conductancia de transmembrana de fibrosis quística y nuevos tratamientos para fibrosis quística
Bustamante AE
Idioma: Ingles.
Referencias bibliográficas: 39
Paginas: 6-12
Archivo PDF: 304.12 Kb.
RESUMEN
La fibrosis quística es una enfermedad hereditaria, autosómica recesiva, causada por mutaciones en el gen de la proteína reguladora de conductancia de transmembrana de fibrosis quística (CFTR). A la fecha se han descrito más de 2,000 mutaciones o variantes en dicho gen. Históricamente el tratamiento de fibrosis quística estaba enfocado en el manejo clínico de las manifestaciones y complicaciones ocasionadas por la disfunción de dicha proteína. El descubrimiento del gen y de las mutaciones causantes de esta enfermedad ha permitido el desarrollo de fármacos conocidos como moduladores del CFTR que restauran y optimizan la función de la proteína defectuosa. El objetivo de esta publicación es llevar a cabo una revisión de estos nuevos medicamentos y su impacto sobre la función pulmonar, el estado nutricional, la calidad de vida y la supervivencia de los pacientes, constituyendo un ejemplo de medicina personalizada.
REFERENCIAS (EN ESTE ARTÍCULO)
Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med. 2007;58:157-170. Available in: https://doi.org/10.1146/annurev.med.58.071905.105316
Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med. 2005;352(19):1992-2001. Available in: https://doi.org/10.1056/nejmra043184
Project C. Clinical and Functional Translation of CFTR. 2024 - [cited 2024 February 09]. Available in: https://www.cftr2.org/
Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519-2531. Available in: https://doi.org/10.1016/s0140-6736(16)00576-6
Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell. 2016;27(3):424-433. Available in: https://doi.org/10.1091/mbc.e14-04-0935
Foundation CF. 2022 Patient Registry Annual Data Report. 2022 - [cited 2024 June 04]. Available in: https://www.cff.org/medical-professionals/patient-registry
European Cystic Fibrosis Society. ECFS Patient Registry 2020 - [cited 2022 June 11]. Available in: https://www.ecfs.eu/sites/default/files/ECFSPR_Report_2020_v1.0%20%2807Jun2022%29_website.pdf
Scotet V, L'Hostis C, Férec C. The changing epidemiology of cystic fibrosis: incidence, survival and impact of the CFTR Gene Discovery. Genes (Basel). 2020;11(6): 589. Available in: https://doi.org/10.3390/genes11060589
Lopes-Pacheco M, Sabirzhanova I, Rapino D, Morales MM, Guggino WB, Cebotaru L. Correctors rescue CFTR mutations in nucleotide-binding domain 1 (NBD1) by modulating proteostasis. Chembiochem. 2016;17(6):493-505. Available in: https://doi.org/10.1002/cbic.201500620
Inc VP. Kalydeco Prescribing information – [ cited 2024 February 07]. Available in: https://pi.vrtx.com/files/uspi_ivacaftor.pdf
Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr, et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros. 2012;11(3):237-245. Available in: https://doi.org/10.1016/j.jcf.2011.12.005
Robertson SM, Luo X, Dubey N, Li C, Chavan AB, Gilmartin GS, et al. Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein. J Clin Pharmacol. 2015;55(1):56-62. Available in: https://doi.org/10.1002/jcph.377
McColley SA. A safety evaluation of ivacaftor for the treatment of cystic fibrosis. Expert Opin Drug Saf. 2016;15(5):709-715. Available in: https://doi.org/10.1517/14740338.2016.1165666
Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Drevínek P, et al.; VX08-770-102 Study Group. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663-1672. Available in: https://doi.org/10.1056/nejmoa1105185
Taylor-Cousar JL, Jain R. Maternal and fetal outcomes following elexacaftor-tezacaftor-ivacaftor use during pregnancy and lactation. J Cyst Fibros. 2021;20(3):402-406. Available in: https://doi.org/10.1016/j.jcf.2021.03.006
Jain R, Magaret A, Vu PT, VanDalfsen JM, Keller A, Wilson A, et al. Prospectively evaluating maternal and fetal outcomes in the era of CFTR modulators: the MAYFLOWERS observational clinical trial study design. BMJ Open Respir Res. 2022;9(1):e001289. Available in: https://doi.org/10.1136/bmjresp-2022-001289
Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, et al.; VX08-770-103 (ENVISION) Study Group. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187(11):1219-1225. Available in: https://doi.org/10.1164/rccm.201301-0153oc
Boyle MP, De Boeck K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med. 2013;1(2):158-163. Available in: https://doi.org/10.1016/s2213-2600(12)70057-7
Flume PA, Liou TG, Borowitz DS, Li H, Yen K, Ordoñez CL, et al.; VX 08-770-104 Study Group. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718-724. Available in: https://doi.org/10.1378/chest.11-2672
Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251-1254. Available in: https://doi.org/10.1016/0092-8674(93)90353-r
Loo TW, Bartlett MC, Clarke DM. Corrector VX-809 stabilizes the first transmembrane domain of CFTR. Biochem Pharmacol. 2013;86(5):612-619. Available in: https://doi.org/10.1016/j.bcp.2013.06.028
Fiedorczuk K, Chen J. Mechanism of CFTR correction by type I folding correctors. Cell. 2022;185(1):158-168.e11. Available in: https://doi.org/10.1016/j.cell.2021.12.009
Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard C, et al. Tezacaftor-Ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017;377(21):2013-2023. Available in: https://doi.org/10.1056/nejmoa1709846
Inc VP. Prescribing information Trikafta – [cited 2024 February 07]. Available in: https://pi.vrtx.com/files/uspi_elexacaftor_tezacaftor_ivacaftor.pdf
Fuchs HJ, Borowitz DS, Christiansen DH, Morris EM, Nash ML, Ramsey BW, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med. 1994;331(10):637-642. Available in: https://doi.org/10.1056/nejm199409083311003
Pai VB, Nahata MC. Efficacy and safety of aerosolized tobramycin in cystic fibrosis. Pediatr Pulmonol. 2001;32(4):314-327. Available in: https://doi.org/10.1002/ppul.1125
De Boeck K, Munck A, Walker S, Faro A, Hiatt P, Gilmartin G, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 2014;13(6):674-680. Available in: https://doi.org/10.1016/j.jcf.2014.09.005
Volkova N, Moy K, Evans J, Campbell D, Tian S, Simard C, et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: Data from national US and UK registries. J Cyst Fibros. 2020;19(1):68-79. Available in: https://doi.org/10.1016/j.jcf.2019.05.015
Barry PJ, Plant BJ, Nair A, Bicknell S, Simmonds NJ, Bell NJ, et al. Effects of ivacaftor in patients with cystic fibrosis who carry the G551D mutation and have severe lung disease. Chest. 2014;146(1):152-158. Available in: https://doi.org/10.1378/chest.13-2397
Hayes D Jr, McCoy KS, Sheikh SI. Improvement of sinus disease in cystic fibrosis with ivacaftor therapy. Am J Respir Crit Care Med. 2014;190(4):468. Available in: https://doi.org/10.1164/rccm.201403-0595im
Hayes D Jr, Warren PS, McCoy KS, Sheikh SI. Improvement of hepatic steatosis in cystic fibrosis with ivacaftor therapy. J Pediatr Gastroenterol Nutr. 2015;60(5):578-579. Available in: https://doi.org/10.1097/mpg.0000000000000765
Sergeev V, Chou FY, Lam GY, Hamilton CM, Wilcox PG, Quon BS. The extrapulmonary effects of cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis. Ann Am Thorac Soc. 2020;17(2):147-154. Available in: https://doi.org/10.1513/annalsats.201909-671cme
Rowe SM, McColley SA, Rietschel E, Li X, Bell SC, Konstan MW, et al.; VX09-809-102 Study Group. Lumacaftor/Ivacaftor treatment of patients with cystic fibrosis heterozygous for F508del-CFTR. Ann Am Thorac Soc. 2017;14(2):213-219. Available in: https://doi.org/10.1513/annalsats.201609-689oc
Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, et al. Tezacaftor-Ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377(21):2024-2035. Available in: https://doi.org/10.1056/nejmoa1709847
Middleton PG, Mall MA, Drevinek P, Lands LC, McKone EF, Polineni D, et al.; VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for cystic fibrosis with a single Phe508del Allele. N Engl J Med. 2019;381(19):1809-1819. Available in: https://doi.org/10.1056/nejmoa1908639
Heijerman HGM, McKone EF, Downey DG, Van Braeckel E, Rowe SM, Tullis E, et al.; VX17-445-103 Trial Group. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet. 2019;394(10212):1940-1948. Available in: https://doi.org/10.1016/s0140-6736(19)32597-8
He R, Lin F, Deng Z, Yu B. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with Phe508del mutation: Evidence from randomized controlled trials. SAGE Open Med. 2024;12:20503121231225874. Available in: https://doi.org/10.1177/20503121231225874
Saluzzo F, Riberi L, Messore B, Loré NI, Esposito I, Bignamini E, et al. CFTR modulator therapies: potential impact on airway infections in cystic fibrosis. Cells. 2022;11(7):1243. Available in: https://doi.org/10.3390/cells11071243
Zampoli M, Morrow BM, Paul G. Real-world disparities and ethical considerations with access to CFTR modulator drugs: Mind the gap! Front Pharmacol. 2023;14:1163391. Available in: https://doi.org/10.3389/fphar.2023.1163391