2024, Número 4
<< Anterior
Ortho-tips 2024; 20 (4)
Propuesta de clasificación y algoritmo del manejo ortobiológico de las pérdidas óseas. Nuevo enfoque terapéutico
Sánchez AR, Gutiérrez MI, Barriga MMA, Reyes PR, Izquierdo MJF, Padilla RL, Silva MJA, Méndez CEA, Garín ZDE
Idioma: Ingles.
Referencias bibliográficas: 73
Paginas: 287-306
Archivo PDF: 593.93 Kb.
RESUMEN
Por medio de la señalización de factores de crecimiento, las células osteoprogenitoras y la matriz extracelular como andamio natural, se logra la consolidación ósea. La regeneración ósea puede ser afectada por factores mecánicos o biológicos. El concepto diamante es contar con mediadores osteoinductivos, células osteogénicas y matriz osteoconductiva (andamio), siendo este el marco de referencia para una respuesta exitosa en la reparación ósea, basado principalmente en la estabilidad mecánica y en el ambiente biológico, mediante una adecuada vascularidad y un óptimo estado fisiológico del huésped. Hay revisiones sistemáticas que apoyan el uso de politerapia con ortobiológicos bajo el concepto diamante en fracturas agudas, retardo en la consolidación y pseudoartrosis. Existen diversas opciones para el manejo de las pérdidas óseas: aplicación de autoinjerto con esponja de colágeno, colocación de bloque de cresta iliaca tricortical autólogo, la técnica de membrana inducida, aloinjerto en segmento intercalar, injerto de peroné vascularizado y transporte óseo. Proponemos una clasificación/algoritmo como guía de tratamiento de acuerdo con el tamaño de la pérdida ósea, aséptica o séptica, utilizando los mejores elementos ortobiológicos y técnicas que hay en la evidencia literaria, optimizando el ambiente mecánico y biológico para lograr la consolidación y el rescate óseo.
REFERENCIAS (EN ESTE ARTÍCULO)
Calori GM, Giannoudis PV. Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury. 2011; 42 (11): 1191-1193. doi: 10.1016/j.injury.2011.04.016.
Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007; 38 Suppl 4: S3-6. doi: 10.1016/s0020-1383(08)70003-2.
Agnes CJ, Karoichan A, Tabrizian M. The diamond concept enigma: recent trends of its implementation in cross-linked chitosan-based scaffolds for bone tissue engineering. ACS Appl Bio Mater. 2023; 6 (7): 2515-2545. doi: 10.1021/acsabm.3c00108.
Andrzejowski P, Giannoudis PV. The 'diamond concept' for long bone non-union management. J Orthop Traumatol. 2019; 20 (1): 21. doi: 10.1186/s10195-019-0528-0.
Rodham PL, Giannoudis VP, Kanakaris NK, Giannoudis PV. Biological aspects to enhance fracture healing. EFORT Open Rev. 2023; 8 (5): 264-282. doi: 10.1530/EOR-23-0047.
Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: a harmony of optimal biology and optimal fixation? Injury. 2007; 38 Suppl 4: S1-2. doi: 10.1016/s0020-1383(08)70002-0.
Giannoudis PV, Kontakis G. Treatment of long bone aseptic non-unions: monotherapy or polytherapy? Injury. 2009; 40 (10): 1021-1022. doi: 10.1016/j.injury.2009.07.064.
Giannoudis PV, Gudipati S, Harwood P, Kanakaris NK. Long bone non-unions treated with the diamond concept: a case series of 64 patients. Injury. 2015; 46 Suppl 8: S48-54. doi: 10.1016/S0020-1383(15)30055-3.
Marongiu G, Dolci A, Verona M, Capone A. The biology and treatment of acute long-bones diaphyseal fractures: overview of the current options for bone healing enhancement. Bone Rep. 2020; 12: 100249. doi: 10.1016/j.bonr.2020.100249. Erratum in: Bone Rep. 2021;14:101085.
Marongiu G, Contini A, Cozzi Lepri A, Donadu M, Verona M, Capone A. The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: a systematic review of clinical evidence. Bioengineering (Basel). 2020; 7 (1): 22. doi: 10.3390/bioengineering7010022.
Jamal MS, Hurley ET, Asad H, Asad A, Taneja T. The role of Platelet Rich Plasma and other orthobiologics in bone healing and fracture management: a systematic review. J Clin Orthop Trauma. 2022; 25: 101759. doi: 10.1016/j.jcot.2021.101759.
Blanton CM, Clougherty CO. The role of bone marrow aspirate in osseous and soft tissue pathology. Clin Podiatr Med Surg. 2021; 38 (1): 1-16. doi: 10.1016/j.cpm.2020.08.001.
Calcei JG, Rodeo SA. Orthobiologics for bone healing. Clin Sports Med. 2019; 38 (1): 79-95. doi: 10.1016/j.csm.2018.08.005.
Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005; 87 (7): 1430-1437. doi: 10.2106/JBJS.D.02215.
Desai P, Hasan SM, Zambrana L, Hegde V, Saleh A, Cohn MR, Lane JM. Bone mesenchymal stem cells with growth factors successfully treat nonunions and delayed unions. HSS J. 2015; 11 (2): 104-111. doi: 10.1007/s11420-015-9432-1.
Benshabat D, Factor S, Maman E, Khoury A, Krespi R, Ashkenazi I, et al. Addition of bone marrow aspirate concentrate resulted in high rate of healing and good functional outcomes in the treatment of clavicle fracture nonunion: a retrospective case series. J Clin Med. 2021; 10 (20): 4749. doi: 10.3390/jcm10204749.
Imam MA, Holton J, Ernstbrunner L, Pepke W, Grubhofer F, Narvani A, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop. 2017; 41 (11): 2213-2220. doi: 10.1007/s00264-017-3597-9.
Schmal H, Brix M, Bue M, Ekman A, Ferreira N, Gottlieb H, et al. Danish orthopaedic trauma society. nonunion - consensus from the 4th annual meeting of the danish orthopaedic trauma society. EFORT Open Rev. 2020; 5 (1): 46-57. doi: 10.1302/2058-5241.5.190037.
Wang CY, Kuo ZK, Hsieh MK, Ke LY, Chen CC, Cheng CM, et al. Cell migration of preosteoblast cells on a clinical gelatin sponge for 3D bone tissue engineering. Biomed Mater. 2019; 15 (1): 015005. doi: 10.1088/1748-605X/ab4fb5.
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci. 2022; 10 (2): 318-353. doi: 10.1039/d1bm01294k.
Elango J, Robinson J, Zhang J, Bao B, Ma N, de Val JEMS, et al. Collagen peptide upregulates osteoblastogenesis from bone marrow mesenchymal stem cells through MAPK-Runx2. Cells. 2019; 8 (5): 446. doi: 10.3390/cells8050446.
Geahchan S, Baharlouei P, Rahman A. Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar Drugs. 2022; 20 (1): 61. doi: 10.3390/md20010061.
Sneha K, Sowjanya K, Vaishnavi V, Chandra RV. Comparative evaluation of efficacy between recombinant human bone morphogenetic protein-2 impregnated with absorbable sponge and platelet-rich fibrin in the treatment of grade ii furcation defects: a randomized controlled trial. Contemp Clin Dent. 2021; 12 (4): 419-425. doi: 10.4103/ccd.ccd_828_20.
Cho JW, Kim J, Cho WT, Kim JK, Song JH, Kim HJ, Masquelet AC, Oh JK. Circumferential bone grafting around an absorbable gelatin sponge core reduced the amount of grafted bone in the induced membrane technique for critical-size defects of long bones. Injury. 2017; 48 (10): 2292-2305. doi: 10.1016/j.injury.2017.08.012.
Finn MD, Schow SR, Schneiderman ED. Osseous regeneration in the presence of four common hemostatic agents. J Oral Maxillofac Surg. 1992; 50 (6): 608-612. doi: 10.1016/0278-2391(92)90443-4.
Giles MÓI, Sánchez AR, Reyes PR, Barriga MMA, Silva MJA, Gutiérrez-Mendoza I, et al. Empleo de esponjas de gelatina "Gelfoam" como andamio en combinación con autoinjerto para el tratamiento de pseudoartrosis. Reporte de casos. Ortho-tips. 2022; 18 (4): 331-336. doi: 10.35366/108284.
Schottel PC, Warner SJ. Role of bone marrow aspirate in orthopedic trauma. Orthop Clin North Am. 2017; 48 (3): 311-321. doi: 10.1016/j.ocl.2017.03.005.
Pierini M, Di Bella C, Dozza B, Frisoni T, Martella E, Bellotti C, et al. The posterior iliac crest outperforms the anterior iliac crest when obtaining mesenchymal stem cells from bone marrow. J Bone Joint Surg Am. 2013; 95 (12): 1101-1107. doi: 10.2106/JBJS.L.00429.
Hyer CF, Berlet GC, Bussewitz BW, Hankins T, Ziegler HL, Philbin TM. Quantitative assessment of the yield of osteoblastic connective tissue progenitors in bone marrow aspirate from the iliac crest, tibia, and calcaneus. J Bone Joint Surg Am. 2013; 95 (14): 1312-1316. doi: 10.2106/JBJS.L.01529.
Hernigou J, Alves A, Homma Y, Guissou I, Hernigou P. Anatomy of the ilium for bone marrow aspiration: map of sectors and implication for safe trocar placement. Int Orthop. 2014; 38 (12): 2585-2590. doi: 10.1007/s00264-014-2353-7.
Hernigou P, Homma Y, Flouzat Lachaniette CH, Poignard A, Allain J, Chevallier N, et al. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop. 2013; 37 (11): 2279-2287. doi: 10.1007/s00264-013-2017-z.
Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997; 79 (11): 1699-1709. doi: 10.2106/00004623-199711000-00012. Erratum in: J Bone Joint Surg Am 1998; 80 (2): 302.
Hernigou P, Desroches A, Queinnec S, Flouzat Lachaniette CH, Poignard A, Allain J, et al. Morbidity of graft harvesting versus bone marrow aspiration in cell regenerative therapy. Int Orthop. 2014; 38 (9): 1855-1860. doi: 10.1007/s00264-014-2318-x.
Bain BJ. Bone marrow biopsy morbidity and mortality. Br J Haematol. 2003; 121 (6): 949-951. doi: 10.1046/j.1365-2141.2003.04329.x.
Hernigou P, Homma Y, Flouzat-Lachaniette CH, Poignard A, Chevallier N, Rouard H. Cancer risk is not increased in patients treated for orthopaedic diseases with autologous bone marrow cell concentrate. J Bone Joint Surg Am. 2013; 95 (24): 2215-2221. doi: 10.2106/JBJS.M.00261.
Santos DLJF, Furtado da Fonseca L, Mosaner T, Tieppo CE, Marques AGO, Ribeiro LL, et al. Bone marrow aspirate clot: a feasible orthobiologic. J Clin Orthop Trauma. 2020; 11 (Suppl 5): S789-S794. doi: 10.1016/j.jcot.2020.07.003.
Anitua E. Sánchez M. A new biological approach to orthopaedic surgery and sports medicine. Spain: Team Work Media, 2013. pp. 55-71, pp. 74-86
Li H, Hicks JJ, Wang L, Oyster N, Philippon MJ, Hurwitz S, et al. Customized platelet-rich plasma with transforming growth factor β1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials. 2016; 87: 147-156.
Miroshnychenko O, Chang WT, Dragoo JL. The use of platelet-rich and platelet-poor plasma to enhance differentiation of skeletal myoblasts: implications for the use of autologous blood products for muscle regeneration. Am J Sports Med. 2017; 45 (4): 945-953.
Sánchez AR, Izquierdo MJF, Gutiérrez-Mendoza I, Rodríguez BÁ, Carrillo GJL, García BM, Cugat BR. Plasma rico en factores de crecimiento (PRGF) en la ortopedia, un camino hacia la ortobiología en México. Ortho-Tips. 2021; 17 (4): 222-236. doi:10.35366/102221.
Ebraheim NA, Elgafy H, Xu R. Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. J Am Acad Orthop Surg. 2001; 9 (3): 210-218. doi: 10.5435/00124635-200105000-00007.
Alford AI, Nicolaou D, Hake M, McBride-Gagyi S. Masquelet's induced membrane technique: Review of current concepts and future directions. J Orthop Res. 2021; 39 (4): 707-718. doi: 10.1002/jor.24978.
Masquelet A, Kanakaris NK, Obert L, Stafford P, Giannoudis PV. Bone repair using the masquelet technique. J Bone Joint Surg Am. 2019; 101 (11): 1024-1036. doi: 10.2106/JBJS.18.00842.
Morelli I, Drago L, George DA, Gallazzi E, Scarponi S, Romanò CL. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury. 2016; 47 Suppl 6: S68-S76. doi: 10.1016/S0020-1383(16)30842-7.
Mathieu L, Durand M, Collombet JM, de Rousiers A, de l'Escalopier N, Masquelet AC. Induced membrane technique: a critical literature analysis and proposal for a failure classification scheme. Eur J Trauma Emerg Surg. 2021; 47 (5): 1373-1380. doi: 10.1007/s00068-020-01540-9.
Lobato SMB, Sánchez AR, Barriga MMA, Silva MJA, Gutiérrez-Mendoza I, Rodríguez BÁ, et al. Uso de ortobiológicos y aloinjerto en el tratamiento de pseudoartrosis con pérdida ósea diafisaria femoral. Orthotips. 2022; (1): 80-85. Disponible en: https://dx.doi.org: 10.35366/103737
Dheenadhayalan J, Devendra A, Velmurugesan P, Shanmukha Babu T, Ramesh P, Zackariya M, et al. Reconstruction of massive segmental distal femoral metaphyseal bone defects after open injury: a study of 20 patients managed with intercalary gamma-irradiated structural allografts and autologous cancellous grafts. J Bone Joint Surg Am. 2022; 104 (2): 172-180. doi: 10.2106/JBJS.21.00065.
Jamshidi K, Bahardoust M, Karimi Behnagh A, Bagherifard A, Mirzaei A. How the choice of osteosynthesis affects the complication rate of intercalary allograft reconstruction? a systematic review and meta-analysis. Indian J Orthop. 2021; 56 (4): 547-558. doi: 10.1007/s43465-021-00563-7.
Errani C, Ceruso M, Donati DM, Manfrini M. Microsurgical reconstruction with vascularized fibula and massive bone allograft for bone tumors. Eur J Orthop Surg Traumatol. 2019; 29 (2): 307-311. doi: 10.1007/s00590-018-2360-2.
Liu Q, He H, Duan Z, Zeng H, Yuan Y, Wang Z, et al. Intercalary allograft to reconstruct large-segment diaphysis defects after resection of lower extremity malignant bone tumor. Cancer Manag Res. 2020; 12: 4299-4308. doi: 10.2147/CMAR.S257564.
Stevens NM, Schultz BJ, Lowe DT, Egol KA. Repair of humeral shaft nonunion with plate and screw fixation and iliac crest bone graft. J Orthop Trauma. 2021; 35 (Suppl 2): S7-S8. doi: 10.1097/BOT.0000000000002154.
Peters RM, Claessen FM, Doornberg JN, Kolovich GP, Diercks RL, van den Bekerom MP. Union rate after operative treatment of humeral shaft nonunion--A systematic review. Injury. 2015; 46 (12): 2314-2324. doi: 10.1016/j.injury.2015.09.041.
Ambriz RG, Sánchez AR, Gutiérrez-Mendoza I, Reyes PR, Giles MOI, Esparza MGA. Reconstrucción diafisaria de radio en pérdida ósea infectada por Pseudomonas aeruginosa mediante técnica de Masquelet. Ortho-tips. 2023; 19 (2): 113-119. doi: 10.35366/110719.
Nauth A, Lane J, Watson JT, Giannoudis P. Bone graft substitution and augmentation. J Orthop Trauma. 2015; 29 Suppl 12: S34-38. doi: 10.1097/BOT.0000000000000464.
Xie J, Wang W, Fan X, Li H, Wang H, Liao R, Hu Y, Zeng M. Masquelet technique: Effects of vancomycin concentration on quality of the induced membrane. Injury. 2022; 53 (3): 868-877. doi: 10.1016/j.injury.2021.11.003.
Feltri P, Solaro L, Errani C, Schiavon G, Candrian C, Filardo G. Vascularized fibular grafts for the treatment of long bone defects: pros and cons. A systematic review and meta-analysis. Arch Orthop Trauma Surg. 2023; 143 (1): 29-48. doi: 10.1007/s00402-021-03962-5.
Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br. 2005; 87 (2): 142-150. doi: 10.1302/0301-620x.87b2.15874.
Li J, Wang Z, Guo Z, Chen GJ, Li SW, Pei GX. The use of massive allograft with intramedullary fibular graft for intercalary reconstruction after resection of tibial malignancy. J Reconstr Microsurg. 2011; 27 (1): 37-46. doi: 10.1055/s-0030-1267381.
Chung DW, Han CS, Lee JH. Reconstruction of composite tibial defect with free flaps and ipsilateral vascularized fibular transposition. Microsurgery. 2011; 31 (5): 340-346. doi: 10.1002/micr.20884.
Feltri P, Solaro L, Di Martino A, Candrian C, Errani C, Filardo G. Union, complication, reintervention and failure rates of surgical techniques for large diaphyseal defects: a systematic review and meta-analysis. Sci Rep. 2022; 12 (1): 9098. doi: 10.1038/s41598-022-12140-5.
Tong K, Zhong Z, Peng Y, Lin C, Cao S, Yang Y, Wang G. Masquelet technique versus Ilizarov bone transport for reconstruction of lower extremity bone defects following posttraumatic osteomyelitis. Injury. 2017; 48 (7): 1616-1622. doi: 10.1016/j.injury.2017.03.042.
Ren C, Li M, Ma T, Li Z, Xu Y, Sun L, Lu Y, Wang Q, Xue H, Zhang K. A meta-analysis of the Masquelet technique and the Ilizarov bone transport method for the treatment of infected bone defects in the lower extremities. J Orthop Surg (Hong Kong). 2022; 30 (2): 10225536221102685. doi: 10.1177/10225536221102685.
Giannoudis PV. Treatment of bone defects: bone transport or the induced membrane technique? Injury. 2016; 47 (2): 291-292. doi: 10.1016/j.injury.2016.01.023.
Thakeb MF, Kozman MA, ElGebeily MA, Baraka MM, Al Kersh MA. Bone transport through induced membrane versus conventional bone transport in management of infected long-bone defects of lower limbs: a randomized controlled trial. J Orthop Trauma. 2023; 37 (9): 462-468. doi: 10.1097/BOT.0000000000002613.
Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC; French Society of Orthopaedic Surgery and Traumatology (SoFCOT). Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012; 98 (1): 97-102. doi: 10.1016/j.otsr.2011.11.001.
Walker M, Sharareh B, Mitchell SA. Masquelet reconstruction for posttraumatic segmental bone defects in the forearm. J Hand Surg Am. 2019; 44 (4): 342.e1-342.e8. doi: 10.1016/j.jhsa.2018.07.003.
Bourgeois M, Loisel F, Bertrand D, Nallet J, Gindraux F, Adam A, et al. Management of forearm bone loss with induced membrane technique. Hand Surg Rehabil. 2020; 39 (3): 171-177. doi: 10.1016/j.hansur.2020.02.002.
Lauthe O, Gaillard J, Cambon-Binder A, Masquelet AC. Induced membrane technique applied to the forearm: technical refinement, indications and results of 13 cases. Orthop Traumatol Surg Res. 2021; 107 (8): 103074. doi: 10.1016/j.otsr.2021.103074.
Micev AJ, Kalainov DM, Soneru AP. Masquelet technique for treatment of segmental bone loss in the upper extremity. J Hand Surg Am. 2015; 40 (3): 593-598. doi: 10.1016/j.jhsa.2014.12.007.
El Farhaoui A, Benalia K, Lachkar A, Abdeljaouad N, Yacoubi H. The induced membrane technique: A therapeutic option for managing bone defects in the upper extremity: case series for 7 patients. Ann Med Surg (Lond). 2022; 81: 104533. doi: 10.1016/j.amsu.2022.104533.
Velázquez-Moreno JD, Casiano-Guerrero G. Algoritmo del tratamiento de la seudoartrosis diafisaria [Diaphyseal pseudarthrosis treatment algorithm]. Acta Ortop Mex. 2019; 33 (1): 50-57. Spanish.
Ferreira N, Marais LC. Management of tibial non-unions according to a novel treatment algorithm. Injury. 2015; 46 (12): 2422-2427. doi: 10.1016/j.injury.2015.09.040.
Grunert M, Hackenbroch C, von Lübken F. Update 2022 Pseudarthrosen: Bildgebende Diagnostik, Klassifikation und Behandlungsalgorithmen [Update on non-unions 2022: Imaging diagnostics, classification and treatment algorithms]. Unfallchirurgie (Heidelb). 2022; 125 (8): 589-601. German. doi: 10.1007/s00113-022-01201-z.