2024, Número 4
<< Anterior Siguiente >>
Acta Pediatr Mex 2024; 45 (4)
Mecanismos moleculares y epidemiología de la resistencia a ceftazidima-avibactam: un análisis integral
Acosta MHE, Merida VJ, Aparicio OG, Urzua AMM, Aquino AA
Idioma: Español
Referencias bibliográficas: 93
Paginas: 326-342
Archivo PDF: 539.71 Kb.
RESUMEN
En 2015, se aprobó el uso de ceftazidima/avibactam (CZA) para el tratamiento de
infecciones complicadas: urinarias, intrabdominales y neumonías adquiridas en
hospitales, causadas por bacilos Gramnegativos multidrogorresistentes. Su aprobación
para uso pediátrico fue en 2019. A pesar de su efectividad inicial, la resistencia
a CZA ha ido en aumento, alcanzando un 10% a nivel global. Este artículo ofrece
una revisión exhaustiva de los mecanismos de acción de la CZA. Se detallan las
principales formas de adquisición de resistencia a este antimicrobiano, como las
mutaciones en la carbapenemasa KPC y betalactamasas de espectro extendido
(BLEE), sobreexpresión en bombas de eflujo y modificación de porinas. También se
revisan investigaciones experimentales para entender las causas de este fenómeno y
se destaca la emergencia de resistencia durante el tratamiento con CZA, subrayando
la importancia de la epidemiología de esta resistencia para determinar los casos en
los que CZA es la mejor opción terapéutica.
REFERENCIAS (EN ESTE ARTÍCULO)
GBD 2019 Antimicrobial Resistance Collaborators. Globalmortality associated with 33 bacterial pathogens in 2019: asystematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221-2248.
Antimicrobial Resistance Collaborators. Global burden ofbacterial antimicrobial resistance in 2019: a systematicanalysis. Lancet. 2022;399(10325):629-655.
Cohen R, Dortet L, Caseris M, Raymond J, Lorrot M, ToubianaJ. Treatment of Resistant Gram-negative bacilli inchildren. Infect Dis Now. 2023;53(8S):104794.
Ma J, Song X, Li M, Yu Z, Cheng W, Yu Z, Zhang W, Zhang Y,Shen A, Sun H, Li L. Global spread of carbapenem-resistantEnterobacteriaceae: Epidemiological features, resistancemechanisms, detection and therapy. Microbiol Res. 2023;266:127249.
Ruppé E; Network for Enhancing Tricycle ESBL SurveillanceEfficiency (NETESE) group. Lessons from a global antimicrobialresistance surveillance network. Bull World HealthOrgan. 2023;101(10):672-678.
Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, IqbalZ, Kulyar MF, Zaheer T, Li K. Genetic basis of molecularmechanisms in β-lactam resistant gram-negative bacteria.Microb Pathog. 2021;158:105040.
Andrei S, Valeanu L, Chirvasuta R, Stefan MG. New FDAapproved antibacterial drugs: 2015-2017. Discoveries(Craiova). 2018;6(1):e81.
Andrei S, Droc G, Stefan G. FDA approved antibacterialdrugs: 2018-2019. Discoveries (Craiova). 2019;7(4):e102.
Meng H, Zhao Y, An Q, Zhu B, Cao Z, Lu J. Use of Ceftazidime-Avibactam for Suspected or Confirmed Carbapenem-Resistant Organisms in Children: A Retrospective Study.Infect Drug Resist. 2023;16:5815-5824.
Franzese RC, McFadyen L, Watson KJ, Riccobene T, CarrothersTJ, Vourvahis M, et al. Population PharmacokineticModeling and Probability of PharmacodynamicTarget Attainment for Ceftazidime-Avibactam in PediatricPatients Aged 3 Months and Older. Clin Pharmacol Ther.2022;111(3):635-645.
Bradley JS, Armstrong J, Arrieta A, Bishai R, Das S, Delair S,et al. Phase I Study Assessing the Pharmacokinetic Profile,Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. AntimicrobAgents Chemother. 2016;60(10):6252-9.
Bradley JS, Broadhurst H, Cheng K, Mendez M, Newell P,Prchlik M, et al. Safety and Efficacy of Ceftazidime-AvibactamPlus Metronidazole in the Treatment of Children ≥3Months to <18 Years With Complicated Intra-AbdominalInfection: Results From a Phase 2, Randomized, ControlledTrial. Pediatr Infect Dis J. 2019;38(8):816-824
Bradley JS, Roilides E, Broadhurst H, Cheng K, Huang LM,MasCasullo V et al. Safety and Efficacy of Ceftazidime-Avibactam in the Treatment of Children ≥3 Months to <18Years With Complicated Urinary Tract Infection: Resultsfrom a Phase 2 Randomized, Controlled Trial. Pediatr InfectDis J. 2019;38(9):920-928.
ClinicalTrials.gov [Internet]. Bethesda (MD): NationalLibrary of Medicine (US). [23-nov-2023]. Available from:https://clinicaltrials.gov/search?intr=Ceftazidime-Avibactam&distance=50&aggFilters=ages:child"[oaicite:0]".
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, ChiriacoM, Finocchi A, Lancella L. Novel Beta Lactam Antibioticsfor the Treatment of Multidrug-Resistant Gram-NegativeInfections in Children: A Narrative Review. Microorganisms.2023;11(7):1798.
Secretaría de Gobernación. [Acuerdo por el que se actualizael compendio nacional de insumos para la salud Publicadoen el diario oficial de la federación el 30 de abril de 2020].Diario Oficial de la Federación. Disponible en: https://www.dof.gob.mx/nota_detalle.php?codigo=5678269&fecha=30/01/2023. Publicado el 30 de enero de 2023; [02de noviembre de 2023].
Radkov AD, Hsu YP, Booher G, VanNieuwenhze MS. ImagingBacterial Cell Wall Biosynthesis. Annu Rev Biochem.2018;87:991-1014.
Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F.Recent Advances in Peptidoglycan Synthesis and Regulationin Bacteria. Biomolecules. 2023;13(5):720.
Liu Y, Breukink E. The Membrane Steps of Bacterial CellWall Synthesis as Antibiotic Targets. Antibiotics (Basel).
2016;5(3):2820. Sethuvel DPM, Bakthavatchalam YD, Karthik M, IrulappanM, Shrivastava R, Periasamy H, et al. β-Lactam Resistancein ESKAPE Pathogens Mediated Through Modifications inPenicillin-Binding Proteins: An Overview. Infect Dis Ther.2023;12(3):829-841.
Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, NordmannP. Molecular and biochemical characterization of VEB-1, anovel class A extended-spectrum beta-lactamase encodedby an Escherichia coli integron gene. Antimicrob AgentsChemother. 1999;43(3):573-81.
Sharma R, Park TE, Moy S. Ceftazidime-Avibactam: A NovelCephalosporin/β-Lactamase Inhibitor Combination for theTreatment of Resistant Gram-negative Organisms. Clin Ther.2016;38(3):431-44.
Sutaria DS, Moya B, Green KB, Kim TH, Tao X, Jiao Y, etal. First Penicillin-Binding Protein Occupancy Patternsof β-Lactams and β-Lactamase Inhibitors in Klebsiellapneumoniae. Antimicrob Agents Chemother. 2018 May25;62(6):e00282-18.
Asli A, Brouillette E, Krause KM, Nichols WW, MalouinF. Distinctive Binding of Avibactam to Penicillin-BindingProteins of Gram-Negative and Gram-Positive Bacteria.Antimicrob Agents Chemother. 2015;60(2):752-6.
Gaibani P, Giani T, Bovo F, Lombardo D, Amadesi S, LazzarottoT, et al. Resistance to Ceftazidime/Avibactam,Meropenem/Vaborbactam and Imipenem/Relebactam inGram-Negative MDR Bacilli: Molecular Mechanisms andSusceptibility Testing. Antibiotics (Basel). 2022;11(5):628.
Poole K. Resistance to beta-lactam antibiotics. Cell Mol LifeSci. 2004 ;61(17):2200-23.
Bush K, Jacoby GA. Updated functional classificationof beta-lactamases. Antimicrob Agents Chemother.2010;54(3):969-76.
Sawa T, Kooguchi K, Moriyama K. Molecular diversity ofextended-spectrum β-lactamases and carbapenemases,and antimicrobial resistance. J Intensive Care. 2020;8:13.
Biswal S, Caetano K, Jain D, Sarrila A, Munshi T, Dickman R,et al. Antimicrobial Peptides Designed against the Ω-Loopof Class A β-Lactamases to Potentiate the Efficacy ofβ-Lactam Antibiotics. Antibiotics (Basel). 2023;12(3):553.
Egorov A, Rubtsova M, Grigorenko V, Uporov I, VeselovskyA. The Role of the Ω-Loop in Regulation of theCatalytic Activity of TEM-Type β-Lactamases. Biomolecules.2019;9(12):854.
Alsenani TA, Viviani SL, Kumar V, Taracila MA, BethelCR, Barnes MD, et al. Structural Characterization ofthe D179N and D179Y Variants of KPC-2 β-Lactamase:Ω-Loop Destabilization as a Mechanism of Resistance toCeftazidime-Avibactam. Antimicrob Agents Chemother.2022;66(4):e0241421.
Hobson CA, Pierrat G, Tenaillon O, Bonacorsi S, BercotB, Jaouen E, et al. Klebsiella pneumoniae CarbapenemaseVariants Resistant to Ceftazidime-Avibactam: anEvolutionary Overview. Antimicrob Agents Chemother.2022;66(9):e0044722.
Piccirilli A, Mercuri PS, Galleni M, Aschi M, MatagneA, Amicosante G, et al. P174E Substitution in GES-1and GES-5 β-Lactamases Improves Catalytic Efficiencytoward Carbapenems. Antimicrob Agents Chemother.2018;62(5):e01851-17.
Ehmann DE, Jahić H, Ross PL, Gu RF, Hu J, Kern G, et al. Avibactamis a covalent, reversible, non-β-lactam β-lactamaseinhibitor. Proc Natl Acad Sci U S A. 2012;109(29):11663-8.
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH,Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations.Clin Microbiol Rev. 2020;34(1):e00115-20.
Arca-Suárez J, Lasarte-Monterrubio C, Rodiño-Janeiro BK,Cabot G, Vázquez-Ucha JC, Rodríguez-Iglesias M, et al.Molecular mechanisms driving the in vivo developmentof OXA-10-mediated resistance to ceftolozane/tazobactamand ceftazidime/avibactam during treatment of XDR Pseudomonasaeruginosa infections. J Antimicrob Chemother.2021;76(1):91-100.
Nicola F, Cejas D, González-Espinosa F, Relloso S, Herrera F,Bonvehí P, et al. Outbreak of Klebsiella pneumoniae ST11Resistant To Ceftazidime-Avibactam Producing KPC-31 andthe Novel Variant KPC-115 during COVID-19 Pandemic inArgentina. Microbiol Spectr. 2022;10(6):e0373322.
Findlay J, Poirel L, Bouvier M, Gaia V, Nordmann P. Resistanceto ceftazidime-avibactam in a KPC-2-producingKlebsiella pneumoniae caused by the extended-spectrumbeta-lactamase VEB-25. Eur J Clin Microbiol Infect Dis.2023;42(5):639-644.
Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA,Miller SA, et al. First Report of Ceftazidime-Avibactam Resistancein a KPC-3-Expressing Klebsiella pneumoniae Isolate.Antimicrob Agents Chemother. 2015;59(10):6605-7.
Humphries RM, Hemarajata P. Resistance to Ceftazidime-Avibactam in Klebsiella pneumoniae Due to Porin Mutationsand the Increased Expression of KPC-3. AntimicrobAgents Chemother. 2017;61(6):e00537-17.
Nelson K, Hemarajata P, Sun D, Rubio-Aparicio D, TsivkovskiR, Yang S, et al. Resistance to Ceftazidime-Avibactam IsDue to Transposition of KPC in a Porin-Deficient Strainof Klebsiella pneumoniae with Increased Efflux Activity.Antimicrob Agents Chemother. 2017;61(10):e00989-17.
Sun L, Li H, Wang Q, Liu Y, Cao B. Increased gene expressionand copy number of mutated blaKPC lead to high-levelceftazidime/avibactam resistance in Klebsiella pneumoniae.BMC Microbiol. 2021;21(1):230.
Bongiorno D, Bivona DA, Cicino C, Trecarichi EM, Russo A,Marascio N, et al. Omic insights into various ceftazidimeavibactam-resistant Klebsiella pneumoniae isolates fromtwo southern Italian regions. Front Cell Infect Microbiol.2023;12:1010979.
Yu M, Wei Q, Song W, Yuan J. Phenotypic and GeneticAnalysis of KPC-49, a KPC-2 Variant Conferring Resistanceto Ceftazidime-Avibactam and Maintaining Resistanceto Imipenem and Meropenem. Infect Drug Resist.2023;16:2477-2485.
Fraile-Ribot PA, Mulet X, Cabot G, Del Barrio-Tofiño E,Juan C, Pérez JL, et al. In Vivo Emergence of Resistanceto Novel Cephalosporin-β-Lactamase Inhibitor Combinationsthrough the Duplication of Amino Acid D149 fromOXA-2 β-Lactamase (OXA-539) in Sequence Type 235Pseudomonas aeruginosa. Antimicrob Agents Chemother.2017;61(9):e01117-17.
Shropshire WC, Endres BT, Borjan J, Aitken SL, BachmanWC, McElheny CL, et al. High-level ceftazidime/avibactamresistance in Escherichia coli conferred by the novel plasmid-mediated β-lactamase CMY-185 variant. J AntimicrobChemother. 2023;78(10):2442-2450.
Xu M, Zhao J, Xu L, Yang Q, Xu H, Kong H, et al. Emergenceof transferable ceftazidime-avibactam resistance in KPCproducingKlebsiella pneumoniae due to a novel CMY AmpCβ-lactamase in China. Clin Microbiol Infect. 2022;28(1):136.e1-136.e6.
Zhou J, Wang W, Liang M, Yu Q, Cai S, Lei T, et al. A NovelCMY Variant Confers Transferable High-Level Resistance toCeftazidime-Avibactam in Multidrug-Resistant Escherichiacoli. Microbiol Spectr. 2023;11(2):e0334922.
Ruedas-López A, Alonso-García I, Lasarte-MonterrubioC, Guijarro-Sánchez P, Gato E, Vázquez-Ucha JC, et al.Selection of AmpC β-Lactamase Variants and Metallo-β-Lactamases Leading to Ceftolozane/Tazobactam andCeftazidime/Avibactam Resistance during Treatment ofMDR/XDR Pseudomonas aeruginosa Infections. AntimicrobAgents Chemother. 2022;66(2):e0206721.
Galani I, Karaiskos I, Souli M, Papoutsaki V, Galani L, GkoufaA, et al. Outbreak of KPC-2-producing Klebsiella pneumoniaeendowed with ceftazidime-avibactam resistance mediatedthrough a VEB-1-mutant (VEB-25), Greece, Septemberto October 2019. Euro Surveill. 2020;25(3):2000028.
Voulgari E, Kotsakis SD, Giannopoulou P, Perivolioti E,Tzouvelekis LS, Miriagou V. Detection in two hospitals oftransferable ceftazidime-avibactam resistance in Klebsiellapneumoniae due to a novel VEB β-lactamase variant witha Lys234Arg substitution, Greece, 2019. Euro Surveill.2020;25(2):1900766.
Both A, Büttner H, Huang J, Perbandt M, Belmar CamposC, Christner M, et al. Emergence of ceftazidime/avibactamnon-susceptibility in an MDR Klebsiella pneumoniae isolate.J Antimicrob Chemother. 2017;72(9):2483-2488.
Cui Q, Wang C, Wang Q, Qin J, Li M, Ding B, et al.Ceftazidime/Avibactam Resistance in Carbapenemase-Producing Klebsiella pneumoniae. Emerg Infect Dis.2023;29(11):2398-2400.
de Sousa T, Hébraud M, Dapkevicius MLNE, Maltez L,Pereira JE, Capita R, Alonso-Calleja C, Igrejas G, PoetaP. Genomic and Metabolic Characteristics of the Pathogenicityin Pseudomonas aeruginosa. Int J Mol Sci.2021;22(23):12892.
Poole K. Multidrug efflux pumps and antimicrobial resistancein Pseudomonas aeruginosa and related organisms.J Mol Microbiol Biotechnol. 2001;3(2):255-64
Choudhury D, Ghose A, Dhar Chanda D, Das Talukdar A,Dutta Choudhury M, Paul D, et al. Premature Terminationof MexR Leads to Overexpression of MexAB-OprM EffluxPump in Pseudomonas aeruginosa in a Tertiary ReferralHospital in India. PLoS One. 2016;11(2):e0149156.
Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish KumarPR. Mutational analyses of regulatory genes, mexR, nalC,nalD and mexZ of mexAB-oprM and mexXY operons, inefflux pump hyperexpressing multidrug-resistant clinicalisolates of Pseudomonas aeruginosa. World J MicrobiolBiotechnol. 2018;34(6):83.
Chalhoub H, Sáenz Y, Nichols WW, Tulkens PM, Van BambekeF. Loss of activity of ceftazidime-avibactam due toMexAB-OprM efflux and overproduction of AmpC cephalosporinasein Pseudomonas aeruginosa isolated frompatients suffering from cystic fibrosis. Int J AntimicrobAgents. 2018;52(5):697-701.
Mojica MF, De La Cadena E, García-Betancur JC, PorrasJ, Novoa-Caicedo I, Páez-Zamora L, et al., MolecularMechanisms of Resistance to Ceftazidime/Avibactamin Clinical Isolates of Enterobacterales and Pseudomonasaeruginosa in Latin American Hospitals. mSphere.2023;8(2):e0065122.
Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pumpinhibitors of clinically relevant multidrug resistant bacteria.Med Res Rev. 2019;39(6):2460-2504.
Shen Z, Ding B, Ye M, Wang P, Bi Y, Wu S, et al. High ceftazidimehydrolysis activity and porin OmpK35 deficiencycontribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. JAntimicrob Chemother 2017;72:1930–6
Pages J-M, Peslier S, Keating TA, Lavigne J-P, NicholsWW. Role of the outer membrane and porins in susceptibilityof b-lactamase-producing Enterobacteriaceae toceftazidime-avibactam. Antimicrob Agents Chemother.2016;60:1349–1359.
Senchyna F, Tamburini FB, Murugesan K, Watz N, Bhatt AS,Banaei N. Comparative genomics of Enterobacter cloacaecomplex before and after acquired clinical resistanceto Ceftazidime-Avibactam. Diagn Microbiol Infect Dis.2021;101(4):115511.
Matovina M, Abram M, Repac-Antić D, Knežević S, BubonjaŠonjeM. An outbreak of ertapenem-resistant, carbapenemase-negative and porin-deficient ESBL-producing Klebsiellapneumoniae complex. Germs. 2021;11(2):199-210.
Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidimeavibactamand underlying mechanisms. J Glob AntimicrobResist. 2020; 22:18-27.
Cui X, Shan B, Zhang X, Qu F, Jia W, Huang B, et al. ReducedCeftazidime-Avibactam Susceptibility in KPC-ProducingKlebsiella pneumoniae From Patients Without Ceftazidime-Avibactam Use History - A Multicenter Study in China. FrontMicrobiol. 2020;11:1365.
El-Kady RAE, Elbaiomy MA, Elnagar RM. MolecularMechanisms Mediating Ceftazidime/Avibactam ResistanceAmongst Carbapenem-Resistant Klebsiella pneumoniaeIsolates from Cancer Patients. Infect Drug Resist.2022;15:5929-5940.
Shields RK, Clancy CJ, Hao B, Chen L, Press EG, Iovine NM,et al. Effects of Klebsiella pneumoniae carbapenemasesubtypes, extended-spectrum β-lactamases, and porinmutations on the in vitro activity of ceftazidime-avibactamagainst carbapenem-resistant K. pneumoniae. AntimicrobAgents Chemother. 2015;59(9):5793-7.
Cavallini S, Unali I, Bertoncelli A, Cecchetto R, Mazzariol A.Ceftazidime/avibactam resistance is associated with differentmechanisms in KPC-producing Klebsiella pneumoniaestrains. Acta Microbiol Immunol Hung. 2021:2021.01626.
Gaibani P, Campoli C, Lewis RE, Volpe SL, Scaltriti E, GiannellaM, et al. In vivo evolution of resistant subpopulationsof KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother.2018;73(6):1525-1529.
Gaibani P, Re MC, Campoli C, Viale PL, Ambretti S. Bloodstreaminfection caused by KPC-producing Klebsiellapneumoniae resistant to ceftazidime/avibactam: epidemiologyand genomic characterization. Clin Microbiol Infect.2020;26(4):516.e1-516.e4.
Castanheira M, Mendes RE, Sader HS. Low Frequency ofCeftazidime-Avibactam Resistance among EnterobacteriaceaeIsolates Carrying blaKPC Collected in U.S. Hospitalsfrom 2012 to 2015. Antimicrob Agents Chemother.2017;61(3):e02369-16.
Guo Y, Liu N, Lin Z, Ba X, Zhuo C, Li F, et al. Mutations inporin LamB contribute to ceftazidime-avibactam resistancein KPC-producing Klebsiella pneumoniae. Emerg MicrobesInfect. 2021;10(1):2042-2051.
Winkler ML, Papp-Wallace KM, Bonomo RA. Activity ofceftazidime/avibactam against isogenic strains of Escherichiacoli containing KPC and SHV β-lactamases withsingle amino acid substitutions in the Ω-loop. J AntimicrobChemother. 2015;70(8):2279-86.
Barnes MD, Winkler ML, Taracila MA, Page MG, DesarbreE, Kreiswirth BN, et al. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler PositionAsp179, and Resistance to Ceftazidime-Avibactam: UniqueAntibiotic-Resistant Phenotypes Emerge from β-LactamaseProtein Engineering. mBio. 2017;8(5):e00528-17.
Papp-Wallace KM, Barnes MD, Taracila MA, Bethel CR,Rutter JD, Zeiser ET, et al. The Effectiveness of Imipenem-Relebactam against Ceftazidime-Avibactam ResistantVariants of the KPC-2 β-Lactamase. Antibiotics (Basel).2023;12(5):892.
Compain F, Arthur M. Impaired Inhibition by Avibactamand Resistance to the Ceftazidime-Avibactam CombinationDue to the D179Y Substitution in the KPC-2 β-Lactamase.Antimicrob Agents Chemother. 2017;61(7):e00451-17.
Hemarajata P, Humphries RM. Ceftazidime/avibactam resistanceassociated with L169P mutation in the omega loopof KPC-2. J Antimicrob Chemother. 2019;74(5):1241-1243.
Ourghanlian C, Soroka D, Arthur M. Inhibition by Avibactamand Clavulanate of the β-Lactamases KPC-2 and CTX-M-15Harboring the Substitution N132G in the Conserved SDN Motif.Antimicrob Agents Chemother. 2017;61(3):e02510-16.
Haidar G, Clancy CJ, Shields RK, Hao B, Cheng S, NguyenMH. Mutations in blaKPC-3 That Confer Ceftazidime-Avibactam Resistance Encode Novel KPC-3 Variants ThatFunction as Extended-Spectrum β-Lactamases. AntimicrobAgents Chemother. 2017;61(5):e02534-16.
Zhang P, Hu H, Shi Q, Sun L, Wu X, Hua X, McNally A, JiangY, Yu Y, Du X. The Effect of β-Lactam Antibiotics on theEvolution of Ceftazidime/Avibactam and Cefiderocol Resistancein KPC-Producing Klebsiella pneumoniae. AntimicrobAgents Chemother. 2023 ;67(3):e0127922.
Compain F, Dorchène D, Arthur M. Combination of AminoAcid Substitutions Leading to CTX-M-15-Mediated Resistanceto the Ceftazidime-Avibactam Combination. AntimicrobAgents Chemother. 2018;62(9):e00357-18.
Stone GG, Ponce-de-Leon A. In vitro activity of ceftazidime/avibactam and comparators against Gram-negativebacterial isolates collected from Latin American centersbetween 2015 and 2017. J Antimicrob Chemother.2020;75(7):1859-1873.
Sader HS, Streit JM, Carvalhaes CG, Huband MD, ShortridgeD, Mendes RE, et al. Frequency of occurrence and antimicrobialsusceptibility of bacteria isolated from respiratorysamples of patients hospitalized with pneumonia in WesternEurope, Eastern Europe and the USA: results from theSENTRY Antimicrobial Surveillance Program (2016-19). JACAntimicrob Resist. 2021;3(3):dlab117.
Zhou J, Yang J, Hu F, Gao K, Sun J, Yang J. Clinical andMolecular Epidemiologic Characteristics of Ceftazidime/Avibactam-Resistant Carbapenem-Resistant Klebsiellapneumoniae in a Neonatal Intensive Care Unit in China.Infect Drug Resist. 2020;13:2571-2578.
Karlowsky JA, Kazmierczak KM, Valente MLNF, Luengas EL,Baudrit M, Quintana A, et al. In vitro activity of ceftazidimeavibactamagainst Enterobacterales and Pseudomonasaeruginosa isolates collected in Latin America as part ofthe ATLAS global surveillance program, 2017-2019. Braz JInfect Dis. 2021;25(6):101647.
Lee YL, Hsueh PR. Poor in vitro activity of ceftazidime/avibactam, ceftolozane/tazobactam, and meropenem/vaborbactam against carbapenem-resistant Pseudomonasaeruginosa in India: Results from the Antimicrobial TestingLeadership and Surveillance (ATLAS) program, 2018-2021.J Infect. 2023;87(1):e1-e4
Appel TM, Mojica MF, De La Cadena E, Pallares CJ, RadiceMA, Castañeda-Méndez P, Jaime-Villalón DA, et al. In VitroSusceptibility to Ceftazidime/Avibactam and Comparatorsin Clinical Isolates of Enterobacterales from Five LatinAmerican Countries. Antibiotics (Basel). 2020;9(2):62.
Wise MG, Karlowsky JA, Lemos-Luengas EV, Valdez RR,Sahm DF. Epidemiology and in vitro activity of ceftazidimeavibactamand comparator agents against multidrugresistantisolates of Enterobacterales and Pseudomonasaeruginosa collected in Latin America as part of the ATLASsurveillance program in 2015‒2020. Braz J Infect Dis.2023;27(3):102759.
Martínez-Miranda R, Gastélum-Acosta M, Guerrero-EstradaP, Ayala-Figueroa RI, Osuna-Álvarez LE. Ceftolozane/tazobactam and ceftazidime/avibactam antimicrobialactivity against clinically relevant gram-negative bacilliisolated in Mexico. Gac Med Mex. 2020;156(6):592-597.
Han X, Shi Q, Mao Y, Quan J, Zhang P, Lan P, et al. Emergenceof Ceftazidime/Avibactam and Tigecycline Resistancein Carbapenem-Resistant Klebsiella pneumoniae Dueto In-Host Microevolution. Front Cell Infect Microbiol.2021;11:757470.
Wang C, Zhao J, Liu Z, Sun A, Sun L, Li B, Lu B, Liu Y, Cao B. Invivo Selection of Imipenem Resistance Among Ceftazidime-Avibactam-Resistant, Imipenem-Susceptible Klebsiellapneumoniae Isolate With KPC-33 Carbapenemase. FrontMicrobiol. 2021;12:727946.
Antinori E, Unali I, Bertoncelli A, Mazzariol A. Klebsiellapneumoniae carbapenemase (KPC) producer resistant toceftazidime-avibactam due to a deletion in the blaKPC-3 gene.Clin Microbiol Infect. 2020;26(7):946.e1-946.e3.