2023, Número 1
Interferón-gamma: vías de señalización y sus implicaciones en el cáncer
Idioma: Español
Referencias bibliográficas: 84
Paginas: 1-17
Archivo PDF: 662.66 Kb.
RESUMEN
Los interferones son una familia de proteínas involucradas en actividades antivirales, inmunomoduladoras y antiinflamatorias. En los últimos años, su estudio se ha incrementado en el contexto del cáncer, y uno de los hallazgos más importantes es que son parte del microambiente de los tumores. El interferón-gamma (IFN-γ) es uno de los miembros de la familia de los interferones y tiene funciones protumorales o antitumorales dependiendo del tipo de cáncer y del microambiente tumoral. En esta revisión se discuten los elementos de la vía de transducción de señales canónica del IFN-γ y sus implicaciones en el desarrollo de las neoplasias malignas. Los estudios sugieren que los elementos de la vía activada por el IFN-γ podrían ser útiles como biomarcadores y/o como blanco de terapias para el cáncer.REFERENCIAS (EN ESTE ARTÍCULO)
Balandeh, E., Mohammadshafie, K., Mahmoudi, Y., HosseinPourhanifeh, M., Rajabi, A., Bahabadi, Z. R., Mohammadi,A. H., Rahimian, N., Hamblin, M. R. & Mirzaei, H.(2021). Roles of non-coding RNAs and angiogenesisin glioblastoma. Frontiers in Cell and DevelopmentalBiology, 9(716462), 1–17. https://doi.org/10.3389/fcell.2021.716462
Benci, J. L., Xu, B., Qiu, Y., Wu, T. J., Dada, H., Twyman-SaintVictor, C., Cucolo, L., Lee, D. S. M., Pauken, K. E., Huang,A. C., Gangadhar, T. C., Amaravadi, R. K., Schuchter, L. M.,Feldman, M. D., Ishwaran, H., Vonderheide, R. H., Maity,A., Wherry, E. J. & Minn, A. J. (2016). Tumor InterferonSignaling Regulates a Multigenic Resistance Program toImmune Checkpoint Blockade. Cell, 167(6), 1540-1554.e12. https://doi.org/10.1016/j.cell.2016.11.022
Chen, H. C., Chou, A. S. Bin, Liu, Y. C., Hsieh, C. H., Kang,C. C., Pang, S. T., Yeh, C. T., Liu, H. P. & Liao, S. K.(2011). Induction of metastatic cancer stem cells fromthe NK/LAK-resistant floating, but not adherent, subsetof the UP-LN1 carcinoma cell line by IFN-γ. LaboratoryInvestigation, 91(10), 1502–1513. https://doi.org/10.1038/labinvest.2011.91
Chen, Z., Zhang, Y., Guan, Q., Zhang, H., Luo, J., Li, J., Wei,W., Xu, X., Liao, L., Wong, J. & Li, J. (2021). Linkingnuclear matrix–localized PIAS1 to chromatin SUMOylationvia direct binding of histones H3 and H2A.Z. Journalof Biological Chemistry, 279(4), 101200. https://doi.org/10.1016/j.jbc.2021.101200
Christie, S. M., Ham, T. R., Gilmore, G. T., Toth, P. D., Leipzig,N. D., Leipzig, N. D. & Smith, A. W. (2020). Covalentlyimmobilizing interferon-γ drives filopodia productionthrough specific receptor-ligand interactions independentlyof canonical downstream signaling. BioconjugateChemistry, 31(5), 1362–1369. https://doi.org/10.1021/acs.bioconjchem.0c00105
Debrincat, M. A., Zhang, J. G., Willson, T. A., Silke, J., Connolly,L. M., Simpson, R. J., Alexander, W. S., Nicola, N. A.,Kile, B. T. & Hilton, D. J. (2007). Ankyrin repeat andsuppressors of cytokine signaling box protein Asb-9 targetscreatine kinase B for degradation. Journal of BiologicalChemistry, 282(7), 4728–4737. https://doi.org/10.1074/jbc.M609164200
Gao, J., Shi, L. Z., Zhao, H., Chen, J., Xiong, L., He, Q.,Chen, T., Roszik, J., Bernatchez, C., Woodman, S. E.,Chen, P. L., Hwu, P., Allison, J. P., Futreal, A., Wargo, J.A. & Sharma, P. (2016). Loss of IFN-γ pathway genes intumor cells as a mechanism of resistance to anti-CTLA-4therapy. Cell, 167(2), 397-404.e9. https://doi.org/10.1016/j.cell.2016.08.069
Haan, C., Is’Harc, H., Hermanns, H. M., Schmitz-Van de Leur,H., Kerr, I. M., Heinrich, P. C., Grötzinger, J. & Behrmann,I. (2001). Mapping of a Region within the N Terminus ofJak1 Involved in Cytokine Receptor Interaction. Journalof Biological Chemistry, 276(40), 37451–37458. https://doi.org/10.1074/jbc.M106135200
Hao, C., Chen, G., Zhao, H., Li, Y., Chen, J., Zhang, H., Li, S.,Zhao, Y., Chen, F., Li, W. & Jiang, W. G. (2020). PD-L1expression in glioblastoma, the clinical and prognosticsignificance: A systematic literature review and metaanalysis.Frontiers in Oncology, 10(June), 1–10. https://doi.org/10.3389/fonc.2020.01015
Imai, Y., Chiba, T., Kondo, T., Kanzaki, H., Kanayama, K.,Ao, J., Kojima, R., Kusakabe, Y., Nakamura, M., Saito,T., Nakagawa, R., Suzuki, E., Nakamoto, S., Muroyama,R., Tawada, A., Matsumura, T., Nakagawa, T., Kato, J.,Kotani, A., Matsubara, H. & Kato, N. (2020). Interferon-γinduced PD-L1 expression and soluble PD-L1 productionin gastric cancer. Oncology Letters, 20(3), 2161–2168.https://doi.org/10.3892/ol.2020.11757
Karachaliou, N., Gonzalez-Cao, M., Crespo, G., Drozdowskyj,A., Aldeguer, E., Gimenez-Capitan, A., Teixido, C.,Molina-Vila, M. A., Viteri, S., Gil, M. D. L. L., Algarra,S. M., Perez-Ruiz, E., Marquez-Rodas, I., Rodriguez-Abreu, D., Blanco, R., Puertolas, T., Royo, M. A. &Rosell, R. (2018). Interferon gamma, an importantmarker of response to immune checkpoint blockadein non-small cell lung cancer and melanoma patients.Therapeutic Advances in Medical Oncology, 10. https://doi.org/10.1177/1758834017749748
Kolli, S., Zito, C. I., Mossink, M. H., Wiemer, E. A. C. &Bennett, A. M. (2004). The major vault protein is a novelsubstrate for the tyrosine phosphatase SHP-2 and scaffoldprotein in epidermal growth factor signaling. Journal ofBiological Chemistry, 279(28), 29374–29385. https://doi.org/10.1074/jbc.M313955200
Krause, C. D., Lavnikova, N., Xie, J., Mei, E., Mirochnitchenko,O. V., Jia, Y., Hochstrasser, R. M. & Pestka, S. (2006).Preassembly and ligand-induced restructuring of the chainsof the IFN-γ receptor complex: The roles of Jak kinases,Stat1 and the receptor chains. Cell Research, 16(1), 55–69.https://doi.org/10.1038/sj.cr.7310008
Liao, J., Fu, Y. & Shuai, K. (2000). Distinct roles of the NH2- andCOOH-terminal domains of the protein inhibitor of activatedsignal transducer and activator of transcription (STAT)1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction.Proceedings of the National Academy of Sciences of theUnited States of America, 97(10), 5267–5272. https://doi.org/10.1073/pnas.97.10.5267
Lo, U. G., Pong, R. C., Yang, D., Gandee, L., Dang, A., Lin, C.J., Santoyo, J., Hong, S., Sonavane, R., Huang, J., Tseng, S.F., Moro, L., Arbini, A. A., Kapur, P., Raj, G., He, D., Lai,C., Lin, H. & Hsieh, J. T. (2018). IFN-γ induces epithelialto-mesenchymal transition of cancer cells via an uniquemicroRNA processing. BioRxiv, 1–60.
Lugade, A. A., Moran, J. P., Gerber, S. A., Rose, R. C., Frelinger,J. G. & Lord, E. M. (2005). Local Radiation Therapy ofB16 Melanoma Tumors Increases the Generation of TumorAntigen-Specific Effector Cells That Traffic to the Tumor.The Journal of Immunology, 174(12), 7516–7523. https://doi.org/10.4049/jimmunol.174.12.7516
Marsters, S. A., Pennica, D., Bach, E., Schreiber, R. D. &Ashkenazi, A. (1995). Interferon γ signals via a high-affinitymultisubunit receptor complex that contains two types ofpolypeptide chain. Proceedings of the National Academyof Sciences of the United States of America, 92(12), 5401–5405. https://doi.org/10.1073/pnas.92.12.5401
Mauldin, I. S., Wages, N. A., Stowman, A. M., Wang, E.,Smolkin, M. E., Olson, W. C., Deacon, D. H., Smith, K.T., Galeassi, N. V., Chianese-Bullock, K. A., Dengel, L.T., Marincola, F. M., Petroni, G. R., Mullins, D. W. &Slingluff, C. L. (2016). Intratumoral interferon-gammaincreases chemokine production but fails to increase Tcell infiltration of human melanoma metastases. CancerImmunology, Immunotherapy, 65(10), 1189–1199. https://doi.org/10.1007/s00262-016-1881-y
Mimura, K., Teh, J. L., Okayama, H., Shiraishi, K., Kua, L.F., Koh, V., Smoot, D. T., Ashktorab, H., Oike, T., Suzuki,Y., Fazreen, Z., Asuncion, B. R., Shabbir, A., Yong, W. P.,So, J., Soong, R. & Kono, K. (2018). PD-L1 expressionis mainly regulated by interferon gamma associated withJAK-STAT pathway in gastric cancer. Cancer Science,109(1), 43–53. https://doi.org/10.1111/cas.13424
Okada, S., Ishikawa, N., Shirao, K., Kawaguchi, H., Tsumura,M., Ohno, Y., Yasunaga, S., Ohtsubo, M., Takihara, Y.& Kobayashi, M. (2007). The novel IFNGR1 mutation774del4 produces a truncated form of interferon-γ receptor1 and has a dominant-negative effect on interferon-γ signaltransduction. Journal of Medical Genetics, 44(8), 485–491.https://doi.org/10.1136/jmg.2007.049635
Patel, S. J., Sanjana, N. E., Kishton, R. J., Eidizadeh, A., Vodnala,S. K., Cam, M., Gartner, J. J., Jia, L., Steinberg, S. M.,Yamamoto, T. N., Merchant, A. S., Mehta, G. U., Chichura,A., Shalem, O., Tran, E., Eil, R., Sukumar, M., Guijarro,E. P., Day, C. P., … Restifo, N. P. (2017). Identificationof essential genes for cancer immunotherapy. Nature,548(7669), 537–542. https://doi.org/10.1038/nature23477
Pearson, J. R. D., Cuzzubbo, S., McArthur, S., Durrant, L. G.,Adhikaree, J., Tinsley, C. J., Pockley, A. G. & McArdle, S. E.B. (2020). Immune Escape in Glioblastoma Multiforme andthe Adaptation of Immunotherapies for Treatment. Frontiersin Immunology, 11(October). https://doi.org/10.3389/fimmu.2020.582106
Shao, L., Hou, W., Scharping, N. E., Vendetti, F. P., Srivastava,R., Roy, C. N., Menk, A. V, Wang, Y., Chauvin, J.,Karukonda, P., Thorne, S. H., Hornung, V., Zarour, H.M., Bakkenist, C. J., Delgoffe, G. M. & Sarkar, S. N.(2019). IRF1 Inhibits Antitumor Immunity throughthe Upregulation of PD-L1 in the Tumor Cell. CancerImmunology Research, 7(8), 1258–1266. https://doi.org/10.1158/2326-6066.CIR-18-0711
Song, M., Ping, Y., Zhang, K., Yang, L., Li, F., Zhang, C., Cheng,S., Yue, D., Maimela, N. R., Qu, J., Liu, S., Sun, T., Li, Z., Xia,J., Zhang, B., Wang, L. & Zhang, Y. (2019). Low-dose IFNginduces tumor cell stemness in tumor microenvironmentof non–small cell lung cancer. Cancer Research, 79(14),3737–3748. https://doi.org/10.1158/0008-5472.CAN-19-0596
Torrisi, F., Alberghina, C., D’Aprile, S., Pavone, A. M.,Longhitano, L., Giallongo, S., Tibullo, D., Di Rosa, M.,Zappalà, A., Cammarata, F. P., Russo, G., Ippolito, M.,Cuttone, G., Li Volti, G., Vicario, N. & Parenti, R. (2022).The Hallmarks of Glioblastoma: Heterogeneity, IntercellularCrosstalk and Molecular Signature of Invasivenessand Progression. Biomedicines, 10(4), 806. https://doi.org/10.3390/biomedicines10040806
Tseng, P. C., Huang, W. C., Chen, C. L., Sheu, B. S., Shan, Y.S., Tsai, C. C., Wang, C. Y., Chen, S. O., Hsieh, C. Y. & Lin,C. F. (2012). Regulation of SHP2 by PTEN/AKT/GSK-3βsignaling facilitates IFN-γ resistance in hyperproliferatinggastric cancer. Immunobiology, 217(9), 926–934. https://doi.org/10.1016/j.imbio.2012.01.001
Wilks, A. F., Harpur, A. G., Kurban, R. R., Ralph, S. J., Zürcher,G. & Ziemiecki, A. (1991). Two novel protein-tyrosinekinases, each with a second phosphotransferase-relatedcatalytic domain, define a new class of protein kinase.Molecular and Cellular Biology, 11(4), 2057–2065. https://doi.org/10.1128/mcb.11.4.2057