2023, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2023; 26 (1)
Análisis proximal, actividad antimicrobiana y crecimiento in vitro de Podaxis pistillaris s.l
Quiñónez-Martínez M, Martínez-Escobedo NA, Nájera-Medellín JA, Valero GJ, Garza-Ocañas F
Idioma: Español
Referencias bibliográficas: 55
Paginas: 1-13
Archivo PDF: 452.40 Kb.
RESUMEN
Podaxis pistillaris s.l. (sensu lato) es un hongo gasteroide distribuido en las regiones áridas y semiáridas del mundo. Es usado en la
medicina tradicional para tratar los problemas dermatológicos, como alimento y con fines estéticos por algunas tribus indígenas, sin
embargo, el conocimiento sobre su composición proximal y potencial antibacterial es escaso en la literatura. En el presente estudio
se determinó la composición proximal, así como la actividad antimicrobiana en
Streptococcus agalactiae y
Candida albicans a
través del método de difusión en disco y Concentración Mínima Inhibitoria (CMI); el crecimiento miceliar
in vitro en cinco medios
de cultivo y tres pH distintos para el crecimiento de
P. pistillaris. Los resultados muestran que el carpóforo de la especie es rico en
proteínas (15.2%) y en carbohidratos (27.8%) y con bajo contenido lipídico (0.5%). Además, el crecimiento en ambos organismos
se inhibió con la técnica de CMI a una concentración de 8.75 mg/mL para
C. albicans y 6.25 mg/mL para
S. agalactiae. Se obtuvo
mejor crecimiento micelial
in vitro al usar Agar de Maíz y de Avena en un pH de 7.0. Esta investigación reporta el primer estudio
proximal y antimicrobiano de una especie con potencial médico-alimenticio del norte del desierto Chihuahuense.
REFERENCIAS (EN ESTE ARTÍCULO)
Alasoadura, S. O. (1966). Studies of the higher fungi of Nigeria II.Macrofungi associated with termite nests. Nova Hedwigia,11 (1–4), 387–393.
Al-Fatimi, M. A. M. (2001). Isolierung und Charakterisierungantibiotisch wirksamer Verbindungen aus Ganodermapfeifferi Bres. und aus Podaxis pistillaris (L.: Pers.)Morse (Tesis de Doctorado). Universidad de Greifswald,Alemania. pp. 350.
Al-Fatimi, M., Jülich, W. D., Jansen, R. & Lindequist,U. (2006). Bioactive components of the traditionallyused mushroom Podaxis pistillaris. Evidence-BasedComplementary and Alternative Medicine, 3, 87-92. https://doi.org/10.1093%2Fecam%2Fnek008.
Association of Official Analytical Chemists (AOAC). (1990).Official Methods of Analysis. 15a ed., Washington D.C.,USA: Association Official Analytical Chemists.
Association of Official Analytical Chemists (AOAC). (2000).Official Methods of Analysis of AOAC International.17th Ed. Gaithersburg, MD, USA: Association OfficialAnalytical Chemists.
Bala, N., Aitken, E., Fechner, N., Cusack, A. & Steadman, K.(2011). Evaluation of antibacterial activity of Australianbasidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharmaceutical Biology, 49 (5), 490-500.https://doi.org/10.3109/13880209.2010.526616.
Bates, S. T. (2006). A preliminary checklist of Arizonamacrofungi. CANOTIA, 2 (2), 47-78.
Buys, M., Conlon, B., Licht, H. D. F., Aanen, D., Poulsen,M. & De Beer, Z. (2018). Searching for Podaxis on thetrails of early explorers in southern Africa. South AfricanJournal of Botany, 115, 317. https://doi.org/10.1016/j.sajb.2018.02.150.
Conlon, B. H., De Beer, Z. W., Henrik, H., Aanen, D. K. &Poulsen, M. (2016). Phylogenetic analyses of diversePodaxis specimens from Southern Africa reveal hiddendiversity and new insights into associations with termites.Fungal Biology, 120, 1065–1076. https://doi. org/10.1016/j.funbio.2016.05.011
Conlon, B. H., Aanen, D. K., Beemelmanns, C., de Beer,Z. W., Henrik, H., Gunde-Cimerman, N., Schiøtt, M.& Poulsen, M. (2019). Reviewing the taxonomy ofPodaxis: Opportunities for understanding extreme fungallifestyles. Fungal biology, 123 (3), 183-187. https://doi.org/10.1016/j.funbio.2019.01.001.
Danish Food Informatics (DFI). (2015). Energy-The AtwaterSystem. http://toolbox.foodcomp.info/ToolBox_Atwater.asp. Fecha de acceso: 22/03/2022.
El Fallal, A., El-Sayed, A. K. & El-Gharabawy, H. M.(2019). Podaxis pistillaris (L.) Fr. and Leucocoprinusbirnbaumii (Corda) Singer; new addition to macrofungiof Egypt. Egyptian Journal of Botany, 59 (2), 413-423.https://dx.doi.org/10.21608/ejbo.2019.5990.1255.
Esqueda, M., Gutiérrez, A., Coronado, M. L., Lizárraga, M.,Raymundo, T. & Valenzuela, R. (2012). Distribuciónde algunos hongos gasteroides (Agaricomycetes) en laplanicie central del Desierto Sonorense. Revista Mexicanade Micología, 36, 1-8.
Feleke, H. T. & Doshi, A. (2017). Antimicrobial activity andbioactive compounds of Indian wild Mushrooms. IndianJournal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)], 8, 254-262. http://op.niscpr.res.in/index.php/IJNPR/article/view/13055.
Food and Agriculture Organization (FAO). (2002). Food andnutrition paper. Food energy-Methods of analysis andconversión factors. Roma: FAO Food and Nutrition Paper17.
García, L., Pérez, J., Aldrete, A., Cetina-Alcala, V. & Vaquera-Huerta, H. (2006). Caracterización del hongo silvestreectomicorrízico Pisolithus tinctorius (Pers.) Coker et.Couch en cultivo y en simbiosis con eucalipto y pino.Agrociencia, 40, 665-676.
Giri, S., Biswas, G., Pradhan, P., Mandal, S. C. & Acharya, K.(2012). Antimicrobial activities of basidiocarps of wildedible mushrooms of West Bengal, India. InternationalJournal of PharmTech Research, 4(4), 1554-1560.
Gómez-Flores, L. D. J., Martínez-Ruiz, N. D. R., Enríquez-Anchondo, I. D., Garza-Ocañas, F., Nájera-Medellín, J.A. & Quiñónez-Martínez, M. (2019). Análisis proximaly de composición mineral de cuatro especies de hongosectomicorrízicos silvestres de la Sierra Tarahumarade Chihuahua. TIP Revista Especializada en CienciasQuímico-Biológicas, 22, 1-10. https://doi.org/10.22201/fesz.23958723e.2019.0.184.
Gupta, S. & Singh, S. P. (1991). Nutritive value of MushroomsPodaxis pistillaris. Indian Journal of Mycology and PlantPathology, 21 (3), 273-276.
Guzmán, G. (1977). Identificación de los hongos comestibles,venenosos, alucinantes ydestructores de la madera. México:Limusa.
Hashem, A. R. & Al–Rahmah, A. N. (1993). Growth ofPodaxis pistillaris collected from Saudi Arabia at differentconcentrations of cadmium and lead. Journal of King SaudUniversity, 5, 127–135.
Hleba, L., Kompas, M., Hutková, J., Rajtar, M., Petrová,J., Čuboň, J., Kántor, A. & Kačániová, M. (2016).Antimicrobial activity of crude ethanolic extracts fromsome medicinal mushrooms. Journal of Microbiology,Biotechnology and Food Sciences, 05 (Special1), 60–63.http://dx.doi.org/10.15414/jmbfs.2016.5.special1.60-63.
Jandaik, C. L. & Kapoor, J. N. (1976). Amino acid compositionof the protein of Podaxis pistillaris (L.ex Pers.) Morse-anedible mushroom. Indian Journal of Mushroom, 2 (2), 33-37.
Kalyoncu, F., Oskay, M., Sağlam, H., Erdoğan T. F. & Tamer,A. U. (2010). Antimicrobial and Antioxidant Activitiesof Mycelia of 10 Wild Mushroom Species. Journal ofMedicinal Food, 13 (2), 415-419. https://doi.org/10.1089/jmf.2009.0090.
Kasuya, M., Coelho, I., Tamai, Y., Miyamoto, T. & Yajima,T. (2008). Morphological and molecular characterizationof Pisolithus occurring in Hokkaido Island, NorthernJapan. Mycoscience, 49, 334–338. https://doi.org/10.1007/S10267-008-0420-X.
Khaliel, A. S., Abou-Heilah, A. N. & Kassim, M. Y. (1991). Themain constituents and nutritive value of Podaxis pistillaris.Acta Botanica Hungarica, 36, 173-179.
Khan, F. N., Zaidi, K. U., Khan, F. & Pandey, M. (2015).Production of exo-biopolymer by submerged mycelialculture of a mushroom Podaxis pistillaris recovered fromBhanpur Landfill Area, Bhopal, Madhya Pradesh. AsianJournal of Biochemical and Pharmaceutical Research, 5(4), 218-229.
Largent, D. (1986). How to identify mushrooms to Genus I:Macroscopic features. Eureka, California, USA: MadRiver Press Inc.
Largent, D., Johnson, D. & Watling, R. (1977). How to identifyMushrooms to Genus III: Microscopic features. Eureka,California, USA: Mad River Press Inc.
Le Doare, K. & Heath, P. T. (2013). An overview of globalGBS epidemiology. Vaccine, 31S, D7-D12. https://doi.org/10.1016/j.vaccine.2013.01.009.
Leyva, J. M., Pérez-Carlón, J. J., González-Aguilar, G. A.,Esqueda, M. & Ayala-Zavala, J. F. (2013). Funcionalidadantibacteriana y antioxidante de extractos hidroalcohólicosde Phellinus merrillii. Revista Mexicana de Micología,37, 11-17.
Lin, E. S. & Chen, Y. H. (2007). Factors affecting mycelialbiomass and exopolysaccharide production in submergedcultivation of Antrodia cinnamomea using complex media.Bioresource Technology, 98, 2511–2517. https://doi.org/10.1016/j.biortech.2006.09.008.
Lovmar, M., Nilsson, K., Vimberg, V., Tenson, T., Nervall, M.& Ehrenberg, M. (2006). The Molecular Mechanism ofPeptide-mediated Erythromycin. The Journal of BiologicalChemistry, 281 (10), 6742–6750. https://doi.org/10.1074/jbc.M511918200.
Medina-Ortiz, A. J., Herrera, T., Vásquez-Dávila, M. A.,Raja, H. A. & Figueroa, M. (2017). The genus Podaxis inarid regions of Mexico: preliminary ITS phylogeny andethnomycological use. MycoKeys, 20, 17-36. https://doi.org/10.3897/mycokeys.20.11570.
Megumi, M, Silva, I., Tisgo, D., Campus, S., Fernández, E.,Tamai, Y. & Miyamoto, T. (2010). Morphological andMolecular Characterization of Pisolithus in soil underEucalypthus plantations in Brazil. Revista Brasileira deCiencia do Solo, 34, 1891-1898. https://doi.org/10.1590/S0100-06832010000600013.
Moreno, G., Lizárraga, M., Esqueda, M. & Coronado, M. L.(2010). Contribution to the study of gasteroid and secotioidfungi of Chihuahua, Mexico. Mycotaxon, 112 (1), 291-315.https://doi.org/10.5248/112.291.
Moreno-Rojas, R., Díaz-Valverde, M. A., Arroyo, B. M.,González, T. J. & Capote, C. J. B. (2004). Mineral Contentof Gurumelo (Amanita ponderosa). Food Chemistry, 85 (3),325-330. https://doi.org/10.1016/S0308-8146(03)00264-4.
Mridu, C. & Atri, N. S. (2015). Podaxis pistillaris- A commonwild edible mushroom from Haryana (India) and itsSociobiology. KAVAKA, 44, 34-37.
Mridu, C. & Atri, N. S. (2017). Nutritional and nutraceuticalcharacterization of three wild edible mushrooms fromHaryana, India. Mycosphere, 8 (8), 1035-1043. http://dx.doi.org/10.5943/mycosphere/8/8/4.
Muhsin, T. M., Abass, A. F. & Al–Habeeb, E. K. (2012). Podaxispistillaris (Gasteromycetes) from the desert of southernIraq, an addition to the known mycota of Iraq. Journal ofBasrah Researches (Sciences), 38 (3), 29–35.
Nieto, A., Amora, E. & Guerra, M. (2012). Selección del mediode cultivo para la producción de biomasa y pigmentos porPisolithus tinctorius. https://smbb.mx/congresos%20smbb/queretaro11/TRABAJOS/trabajos/II/carteles/CII-24.pdf.Fecha de acceso: 23/06/2021.
Padilla, M. A. (2012). Inhibicion in vitro del Enterococcusfaecalis con hidroxido de calcio, clorexidina y ozono (Tesisde maestría). Universidad Autónoma de Ciudad Juárez.México. pp. 129.
Panwar, C. & Purohit, D. K. (2002). Antimicrobialactivities of Podaxis pistillaris and Phelloriniainquinans against Pseudomonas aeruginosa and Proteusmirabilis. Mushroom Research, 11, 43–44.
Priest, M. J. & Lenz, M. (1999). The Genus Podaxis(Gasteromycetes) in Australia with a Description of a NewSpecies from Termite Mounds. Astralian Systematic Botany,12, 109-116. https://doi.org/10.1071/SB95043.
Rasalanavho, M., Moodley, R. & Jonnalagadda, S. B. (2019).Elemental distribution including toxic elements in edibleand inedible wild growing mushrooms from SouthAfrica. Environmental Science and Pollution Research, 26(8), 7913-7925. https://doi.org/10.1007/s11356-019-04223-0.
Rascon-Chu, A., Vergara, C. A. C., Soto, C. G. F., Soto, T.E. G., Valle, M. E. & Villegas, J. A. S. (2019). Fibrolyticactivity of Podaxis pistillaris fungus in submerged culture.Biotecnia, 21 (1), 120-126. https://doi.org/10.18633/biotecnia.v21i1.874.
Ren, L., Hemar, Y., Perera, C. O., Lewis, G., Krissansen, G. W.& Buchanan, P. K. (2014). Antibacterial and antioxidantactivities of aqueous extracts of eight edible mushrooms.Bioactive Carbohydrates and Dietary Fibre, 3 (2), 41–51.https://doi.org/10.1016/j.bcdf.2014.01.003.
Riain, N. U. (2013). Recommended management of commonbacterial skin infections. Prescriber, 22(15–16), 15–25.
Sharma, V. P., Singh, M., Kumar, S., Kamal, S. & Singh, R.(2015). Phylogene and physiology of Phellorinia spp.: adelicacy of Indian desert. International Research Journalof Natural and Applied Sciences, 2 (4), 1-17.
Shokohi, T., Aslani, N., Ahangarkani, F., Meyabadi, M.F., Hagen, F., Meis, J. F., Boekhout, T., Kolecka, A. &Badali, H. (2018). Candida infanticola and Candidaspencermartinsiae yeasts: Possible emerging species incancer patients. Microbial Pathogenesis, 115, 353–357.https://doi.org/10.1016/j.micpath.2017.12.069.
Suroowan, S. & Mahomoodally, M. F. (2017). AlternativeAntimicrobials from Natural Products AgainstDermatological Infections. En Kon, K. & Rai M. (eds.).The Microbiology of Skin, Soft Tissue, Bone and JointInfections. (pp. 185-204) Academic Press.
Vázquez-García, A., Santiago-Martínez, G. & Estrada-Torres,A. (2002). Influencia del pH en elcrecimiento de quincecepas de hongos ectomicorrizógenos. Anales del Institutode Biología, Universidad Nacional Autónoma de México,Serie Botánica, 73, 1-15.
Villalobos, S., Mengual, M. & Mejía, L. G. H. (2017). Uso delos hongos Podaxis pistillaris, Inonotus rickii y Phelloriniaherculeana (basidiomycetes), por la Etnia A Wayuu en laAlta Guajira Colombiana. Etnobiología, 15 (1), 64-73.
Walsh, F. M. & Amyes, S. G. B. (2004). Microbiology anddrug resistance mechanisms of fully resistant pathogens.Current Trends, 7, 439-444. https://doi.org/10.1016/j.mib.2004.08.007.
Wright, J. & Albertó, E. (2002). Guía de los hongos de laregión Pampeana. I. Hongos con laminillas. Buenos Aires,Argentina: L.O.L.A. (Literature of Latin America).