2024, Número 2
<< Anterior Siguiente >>
Rev Mex Med Forense 2024; 9 (2)
Potencial criminogénico de las alteraciones neurobiológicas de la agresión
Ríos MNP, Colorado HJL, Guzmán BI, Jiménez BCA, Melo SG
Idioma: Español
Referencias bibliográficas: 39
Paginas: 100-110
Archivo PDF: 274.84 Kb.
RESUMEN
La neurobiología de la agresión es un campo es de estudio complejo que pretenden
incluir el análisis de todos los procesos neurobiológicos y circuitos neuronales que
participan en la generación de la conducta agresiva, especialmente en seres humanos. Una
de las áreas de mayor estudio es la amígdala y el hipotálamo, que son zonas cerebrales
involucradas con la respuesta emocional y la regulación del comportamiento; por otro lado,
existen neurotransmisores, como la serotonina, la dopamina y la adrenalina, las cuales
tienen una importante implicación en la neurobiología de la agresión humana. Relacionado
con lo anterior, existen hormonas que pueden asociarse con la agresión, como por ejemplo
la testosterona y el cortisol; de ellas, la testosterona puede involucrarse con el surgimiento
de comportamientos competitivos y agresivos en ciertos contextos sociales. Es cada vez
mayor la evidencia que señala que la agresión y la agresividad pudieran ser considerados
como condicionantes directos de una potencial conducta delictiva. Por consiguiente, el
estudio de los mecanismos neurobiológicos de la agresión puede ser un punto de referencia
para entender la manera en que el cerebro pudiera participar en el surgimiento de una
conducta criminogénica.
REFERENCIAS (EN ESTE ARTÍCULO)
Anderson SW, Barrash J, Bechara A, Tranel D. Impairments of emotion and real-worldcomplex behavior following childhood- or adult-onset damage to ventromedial prefrontalcortex. J Int Neuropsychol Soc. 2006; 12:224–235
Austerman, J. Violence and Aggressive Behavior. Pediatr. Rev. 2017, 38, 69–80.
Bannon, S.M.; Salis, K.L.; Daniel O’Leary, K. Structural brain abnormalities in aggressionand violent behavior. Aggress. Violent Behav. 2015, 25, 323–331.
Bertsch, K.; Florange, J.; Herpertz, S.C. Understanding Brain Mechanisms of ReactiveAggression. Curr. Psychiatry Rep. 2020, 22, 81.
Bufkin, J.L.; Luttrell, V.R. Neuroimaging studies of aggressive and violent behavior: Currentfindings and implications for criminology and criminal justice. Trauma Violence Abus. 2005,
6, 176–191.6. Chester, D.S.; Lynam, D.R.; Milich, R.; DeWall, C.N. Physical aggressiveness and graymatter deficits in ventromedial prefrontal cortex. Cortex 2017, 97, 17–22.
Choy, O.; Raine, A.; Hamilton, R.H. Stimulation of the Prefrontal Cortex Reduces Intentionsto Commit Aggression: A Randomized, Double-Blind, Placebo-Controlled, Stratified,Parallel-Group Trial. J. Neurosci. 2018, 38, 6505–6512.
Cristofori, I.; Zhong, W.; Mandoske, V.; Chau, A.; Krueger, F.; Strenziok, M.; Grafman, J.Brain Regions Influencing Implicit Violent Attitudes: A Lesion-Mapping Study. J. Neurosci.2016, 36, 2757–2768.
Da Cunha-Bang, S.; Fisher, P.M.; Hjordt, L.V.; Perfalk, E.; Persson Skibsted, A.; Bock, C.;Ohlhues Baandrup, A.; Deen, M.; Thomsen, C.; Sestoft, D.M.; et al. Violent offendersrespond to provocations with high amygdala and striatal reactivity. Soc. Cogn. Affect.Neurosci. 2017, 12, 802–810
Damasio H, Grabowski T, Frank R, Galaburda AM, Damasio AR. The return of PhineasGage: clues about the grain from the skull of a famous patient. Science. 1994; 264:1102–
1105.11. Dambacher, F.; Schuhmann, T.; Lobbestael, J.; Arntz, A.; Brugman, S.; Sack, A.T. Reducingproactive aggression through non-invasive brain stimulation. Soc. Cogn. Affect. Neurosci.2015, 10, 1303–1309
De Almeida, R.M.M.; Cabral, J.C.C.; Narvaes, R. Behavioural, hormonal andneurobiological mechanisms of aggressive behaviour in human and nonhuman primates.Physiol. Behav. 2015, 143, 121–135.
de Brito, S.A.; Mechelli, A.; Wilke, M.; Laurens, K.R.; Jones, A.P.; Barker, G.J.; Hodgins,S.; Viding, E. Size matters: Increased grey matter in boys with conduct problems and callousunemotionaltraits. Brain 2009, 132, 843–852
Donegan NH, Sanislow CA, Blumberg HP, Fulbright RK, Lacadie C, Skudlarski P, Gore JC,Olson IR, McGlashan TH, Wexler BE. Amygdala hyper-reactivity in borderline personalitydisorder: implications for emotional dysregulation. Biol Psychiatry. 2003; 54:1284–1293.
George DT, Rawlings RR, Williams WA, Phillips MJ, Fong G, Kerich M, Momenan R,Umhau JC, Hommer D. A select group of perpetrators of domestic violence: evidence ofdecreased metabolism in the right hypothalamus and reduced relationships betweencortical/subcortical brain structures in positron emission tomography. Psychiatry Res. 2004;130:11–25.
Gobrogge KL, Liu Y, Jia X, Wang Z. Anterior hypothalamic neural activation andneurochemical associations with aggression in pair-bonded male prairie voles. J CompNeurol. 2007; 502:1109–1122.
Goyer PF, Andreason PJH, Semple WE, Clayton AH, King AC, Compton-Toth BA, SchulzSC, Cohen RM. Positron-emission tomography and personality disorders.Neuropsychopharmacology. 1994; 10:21–28.
Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM. Frontal lobe injuries,violence and aggression: a report of the Vietnam Head Injury Study. Neurology. 1996;46:12311238.
Hazlett EA, New AS, Newmark R, Haznedar MM, Lo JN, Speiser LJ, Chen AD, MitropoulouV, Minzenberg M, Siever LJ, Buchsbaum MS. Reduced anterior and posterior cingulatedgray matter in borderline personality disorder. Biol Psychiatry. 2005; 58:614–623
Helmy, M.; Zhang, J.;Wang, H. Neurobiology and Neural Circuits of Aggression. Adv. Exp.Med. Biol. 2020, 1284, 9–22.
Hollander EA, Swann AC, Coccaro EF, Jiang P, Smith TB. Impact of trait impulsivity andstate aggression on divalproex versus placebo response in borderline personality disorder.Am J Psychiatry. 2005; 162:621–624.
Hortensius, R.; Schutter, D.J.L.G.; Harmon-Jones, E. When anger leads to aggression:Induction of relative left frontal cortical activity with transcranial direct current stimulationincreases the anger-aggression relationship. Soc. Cogn. Affect. Neurosci. 2012, 7, 342–347.
Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, GallhoferB, Meyer-Lindenberg A. Oxytocin modulates neural circuitry for social cognition and fear inhumans. J Neurosci. 2005; 25:11489–11493
Koenigsberg HW, Prohovnik I, Lee H, Pizzarello S, New AS, Siever LJ. Neural correlates ofthe processing of negative and positive social scenes in borderline personality disorder(abstract). Biol Psychiatry. 2007; 61:104s.
Krakowski MI, Czobor P, Citrome L, Bark N, Cooper TB. Atypical antipsychotic agents inthe treatment of violent patients with schizophrenia and schizoaffective disorder. Arch GenPsychiatry. 2006; 63:622–629
Miczek, K.A.; Takahashi, A.; Gobrogge, K.L.; Hwa, L.S.; de Almeida, R.M.M. EscalatedAggression in Animal Models: Shedding New Light on Mesocorticolimbic Circuits. Curr.Opin. Behav. Sci. 2015, 3, 90–95.
Minzenberg MJ, Fan J, New AS, Tang CY, Siever LJ. Front-limbic dysfunction in responseto facial emotion in borderline personality disorder: an event-related fMRI study. PsychiatryRes. 2007; 155:231–243
Nikolic, M.; Pezzoli, P.; Jaworska, N.; Seto, M.C. Brain responses in aggression-proneindividuals: A systematic review and meta-analysis of functional magnetic resonanceimaging (fMRI) studies of anger- and aggression-eliciting tasks. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 119, 110596.
Pietrini P, Guazzelli M, Basso G, Jaffe K, Grafman J. Neural correlates of imaginalaggressive behavior assessed by positron emission tomography in healthy subjects. Am JPsychiatry. 2000; 157:1772–1781
Raine A, Meloy JR, Bihrle S, Stoddard J, LaCasse L, Buchsbaum MS. Reduced prefrontaland increased subcortical brain functioning assess using positron emission tomography inpredatory and affective murderers. Behav Sci Law. 1998; 16:319–332.
Raine A, Lencz T, Bihrle S, LaCasse L, Colletti P. Reduced prefrontal gray volume andautonomic deficits in antisocial personality disorder. Arch Gen Psychiatry. 2000; 57:119–127.
Raine, A. The neuromoral theory of antisocial, violent, and psychopathic behavior.Psychiatry Res. 2019, 277, 64–69.
Thiebaut de Schotten, M.; Dell’Acqua, F.; Ratiu, P.; Leslie, A.; Howells, H.; Cabanis, E.;Iba-Zizen, M.T.; Plaisant, O.; Simmons, A.; Dronkers, N.F.; et al. From Phineas Gage andMonsieur Leborgne to H.M.: Revisiting Disconnection Syndromes. Cereb. Cortex 2015, 25,4812–4827.
Valzelli, L. (1983). Psicobiología de la agresión y la violencia. Madrid: Alhambra.
Volkow ND, Tancredi LR, Grant C, Gillespie H, Valentine A, Mullani N, Wang GJ, HollisterL. Brain glucose metabolism in violent psychiatric patients: a preliminary study. PsychiatryRes. 1995; 61:243–253
Wersinger SR, Caldwell HK, Christiansen M, Young WS3rd. Disruption of the vasopressin1b receptor gene impairs the attack component of aggressive behavior in mice. Genes BrainBehav. 2007; 6:653–660.
Winstanley CA. 5-HT2A and 5-HT2C receptor antagonists have opposing effects on ameasure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology(Berl). 2004; 176:376–385
Wood RM, Rilling JK, Sanfey AG, Bhagwagar Z, Rogers RD. Effects of tryptophandepletion on the performance of an iterated prisoner’s dilemma game in healthy adults.Neuropsychopharmacology. 2006; 31:1075–1084.
Yang, Y.; Joshi, S.H.; Jahanshad, N.; Thompson, P.M.; Baker, L.A. Neural correlates ofproactive and reactive aggression in adolescent twins. Aggress. Behav. 2017, 43, 230–240.