2022, Número 2
Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2022; 38 (2)
Aspectos citogenéticos y moleculares en los síndromes mielodisplásicos
Lavaut SK, González GS
Idioma: Español
Referencias bibliográficas: 44
Paginas: 1-15
Archivo PDF: 301.54 Kb.
RESUMEN
Introducción:
Los síndromes mielodisplásicos constituyen un grupo heterogéneo de alteraciones de la célula progenitora hematopoyética. Estos se caracterizan por presentar una médula ósea hipercelular, una hematopoyesis inefectiva, displasia y citopenia periférica y la posibilidad de evolución a leucemia mieloide aguda.
Objetivo:
Describir las alteraciones citogenéticas y moleculares más frecuentes de los síndromes mielodisplásicos.
Métodos:
Se realizó una revisión de la literatura en los idiomas inglés y español, a través del sitio web PubMed y el motor de búsqueda Google académico, de artículos publicados en los últimos cinco años. Se realizó análisis y resumen de la bibliografía.
Análisis y síntesis de la información:
En los síndromes mielodisplásicos están presentes alteraciones citogenéticas frecuentes como la deleción de los cromosomas 5q, 7q y 20q, la monosomía del cromosoma 7, la trisomía del cromosoma 8 y la presencia de cariotipos complejos, que, unido a mutaciones somáticas en diferentes genes, intervienen en la patogénesis de la enfermedad y su conocimiento permite la estratificación pronóstica de los pacientes.
Conclusiones:
El diagnóstico a través de los estudios citogenéticos convencionales, la hibridación in situ por fluorescencia y la secuenciación génica permite una mayor comprensión de la biología de la enfermedad, la estratificación del riesgo y la toma de decisiones terapéuticas.
REFERENCIAS (EN ESTE ARTÍCULO)
Fernández ND. Síndromes mielodisplásicos: una mirada al último Decenio. Rev Cubana Hematol, Inmunol y Hemoter. 2016 [acceso 21/06/2021];32(4): Disponible en: http://www.revhematologia.sld.cu/index.php/hih/article/view/4841.
Hellström E, Tobiasson N, Greenberg P. Myelodysplastic syndromes: moving towards personalized management. Haematologica. 2020;105(7):1765-79. DOI: https://10.3324/haematol.2020.2489552.
Bannon SA, DiNardo CD. Hereditary Predispositions to Myelodysplastic Syndrome. Int J Mol Sci. 2016;17(6):838. DOI: https://10.3390/ijms170608383.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le beau MM, et al. The updated Who classification of hematological malignancies. The 2016 revision to the world health organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. DOI: https://10.1182/blood-2016-03-6435444.
Awada H, Thapa B, Visconte V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells. 2020;9:2512. DOI: https://10.3390/cells91125125.
Andreevna Y, Evgenievich S, Borisovich I, Ivanovna T, Fyodorovich I. Prognostic Markers of Myelodysplastic Syndromes. Medicina. 2020;56:376. DOI: https://10.3390/medicina560803766.
Hasserjian RP. Myelodysplastic Syndrome Updated. Pathobiol. 2019;86:7-13. DOI: https://10.1159/0004897027.
Song Q, Peng M, Chu Y, Huang S. Techniques for detecting chromosomal aberrations in myelodysplastic syndromes. Oncotarget. 2017;8(37):62716-29. DOI: https://10.18632/oncotarget.176988.
Arias-Mira DE. Síndrome de deleción del 5q. Rev Hematol Mex. 2020;21(1):56-60. DOI: https://doi.org/10.24245/rev_hematol.v21i1.35549.
Mortensen TB, Frederiksen H, Marcher CW, Preiss B. Refractory primary immune thrombocytopenia with subsequent del(5q) MDS: complete remission of both after lenalidomide. BMJ Case Rep. 2017;4:2017. DOI: https://10.1136/bcr-2016-21588810.
Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 2011; 29(15):1971_9. DOI: https://10.1200/JCO.2010.31.857611.
Zemanova Z, Michalova K, Buryova H, Brezinova J, Kostylkova K, Bystricka D, et al. Involvement of deleted chromosome 5 in complex chromosomal aberrations in newly diagnosed myelodysplastic syndromes (MDS) is correlated with extremely adverse prognosis. Leuk Res. 2014;38(5):537_44. Disponible en: https://doi.org/10.1016/j.leukres.2014.01.01212.
Schneider RK, Schenone M, Ferreira MV, Kramann R, Joyce CE, Hartigan C, et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med. 2016;22(3):288_97. DOI: https://10.1038/nm.404713.
Kuzmanovic T, Patel BJ, Sanikommu SR, Nagata Y, Awada H, Kerr CM, et al. Genomics of therapy-related myeloid neoplasms. Hematological. 2020;105(3):e98_e101. DOI: https://10.3324/haematol.2019.21935214.
Wong JC, Weinfurtner KM, Alzamora MP, Kogan SC, Burgess MR, Zhang Y, et al. Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. Elife. 2015;4:e07839. DOI: https://10.7554/eLife.0783915.
Hasegawa N, Oshima M, Sashida G, Matsui H, Koide S, Saraya A, et al. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome. Leukemia. 2017;31(4):861_71. DOI: https://10.1038/leu.2016.26816.
Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. Hematology Am Soc Hematol Educ Program. 2016;2016(1):598_604. DOI: https://10.1182/asheducation-2016.1.59817.
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia- Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454_65. DOI: https://10.1182/blood-2012-03-42048918.
Cumbo C, Tota G, Anelli L, Zagaria A, Specchia G, Albano F. TP53 in Myelodysplastic Syndromes: Recent Biological and Clinical Findings. Int J Mol Sci. 2020;21:3432. DOI: https://10.3390/ijms2110343219.
Abáigar M, Robledo C, Benito R, Ramos F, Díez-Campelo M, Hermosín L, et al. Chromothripsis Is a Recurrent Genomic Abnormality in High-Risk Myelodysplastic Syndromes. PLoS One. 2016;11(10):e0164370. DOI: https://10.1371/journal.pone.016437020.
Yan X, Wang L, Jiang L, Luo Y, Lin P, Yang W, et al. Clinical significance of cytogenetic and molecular genetic abnormalities in 634 Chinese patients with myelodysplastic syndromes. Cancer Med.2021;10(5):1759_71. DOI: https://10.1002/cam4.378621.
Jiang L, Wang L, Shen C, Zhu S, Lang W, Luo Y, et al. Impact of mutational variant allele frequency on prognosis in myelodysplastic syndromes. Am J Cancer Res. 2020;10(12):4476-87.
Haferlach T. The Molecular Pathology of Myelodysplastic Syndrome. Pathobiol. 2019;86(1):24_9. DOI: https://10.1159/00048871223.
Gill H, Leung A, Kwong YL. Molecular and Cellular Mechanisms of Myelodysplastic Syndrome: Implications on Targeted Therapy. Int J Mol Sci. 2016;17(4):440. DOI: https://10.3390/ijms1704044024.
Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, et al. SF3B1-mutant myelodysplastic syndrome as a distinct disease subtype - a proposal of the International Working Group for the Prognosis of Myelodysplastic Syndromes (IWG-PM). Blood. 2020;136(2):157-70. DOI: https://10.1182/blood.202000485025.
Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood. 2012;119(2):569_72. DOI: https://10.1182/blood-2011-09-37799426.
Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res. 2014;49(4):216-27. DOI: https://10.5045/br.2014.49.4.21627.
Liang Y, Tebaldi T, Rejeski K, Joshi P, Stefani G, Taylor A, et al. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells. Leukemia. 2018;32(12):2659_71. DOI: https://10.1038/s41375-018-0152-728.
Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28(1):78_87. DOI: https://10.1038/leu.2013.26929.
Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;124(17):2705-12. DOI: https://10.1182/blood-2014-06-58280930.
Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376-82. DOI: https://10.1200/JCO.2011.40.737931.
Bejar R. Clinical and genetic predictors of prognosis in myelodysplastic syndromes. Haematologica. 2014;99(6):956-64. DOI: https://10.3324/haematol.2013.08521732.
Xu F, Liu L, Chang CK, He Q, Wu LY, Zhang Z, et al. Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome. Oncotarget. 2016;7(7):8119_30. DOI: https://10.18632/oncotarget.699233.
Hasegawa N, Oshima M, Sashida G, H Matsuai, S Koide, A Saraya, et al. Impact of combinatorial dysfunctions of Tet2 and Ezh2 on the epigenome in the pathogenesis of myelodysplastic syndrome. Leukemia. 2017;31:861_71. DOI: https://doi.org/10.1038/leu.2016.26834.
Harada Y, Inoue D, Ding Y, Imagawa J, Doki N, Matsui H, et al. RUNX1/AML1 mutant collaborates with BMI1 overexpression in the development of human and murine myelodysplastic syndromes. Blood. 2013;121(17):3434_46. DOI: https://10.1182/blood-2012-06-43442335.
Haase D, Stevenson KE, Neuberg D, Maciejewski JP, Nazha A, Sekeres MA, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. 2019;33(7):1747_58. DOI: https://10.1038/s41375-018-0351-236.
Ren T, Wang J, Zhang H, Mei Ch, Ye L, Luo Y, et al. TP53 mutations are associated with very complex karyotype and suggest poor prognosis in newly diagnosed myelodysplastic syndrome patients with monosomal karyotype. Asia-Pacific J of Clin Oncol. 2020;16(3):172-9. DOI: https://doi.org/10.1111/ajco.1331637.
Zeinali T, Mansoori B, Mohammadi A. Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother. 2019;109:195-207. DOI: https://doi.org/10.1016/j.biopha.2018.10.03738.
Caponetti GC, Bagg A. Mutations in myelodysplastic syndromes: Core abnormalities and CHIPping away at the edges. Int J Lab Hematol. 2020;42(6):67184. DOI: https://doi.org/10.1111/ijlh.1328439.
Swoboda DV, Ali NA, Chan O, Padron E, Kuykendall AT, Song J, et al. PTPN11 mutations are associated with poor outcomes across myeloid malignancies. Leukemia. 2021;35:286_8. DOI: https://doi.org/10.1038/s41375-020-01083-340.
Viny AD, Levine RL. Cohesin mutations in myeloid malignancies made simple. Curr Opin Hematol. 2018;25(2):61_6. DOI: https://10.1097/MOH.000000000000040541.
Churpek JE. Familial myelodysplastic syndrome/acute myeloid leukemia. Best Pract Res Clin Haematol. 2017;30(4):287-9. DOI: https://10.1016/j.beha.2017.10.00242.
Godley LA, Shimamura A. Genetic predisposition to hematologic malignancies: management and surveillance. Blood. 2017;130(4):424-32. DOI: https://10.1182/blood-2017-02-73529043.
Godley Lucy A. Germline mutations in MDS/AML predisposition disorders. Curr Opinion Hematol. 2021;28(2):86-93. DOI: https://10.1097/MOH.000000000000063344.