2023, Número 4
<< Anterior Siguiente >>
Rev Neurol Neurocir Psiquiat 2023; 51 (4)
Enfermedad por coronavirus 2019, COVID-19: manifestaciones neurológicas y complicaciones
Benavides-Hinestroza J, Estévez-Rivera E, García-Perdomo HA
Idioma: Ingles.
Referencias bibliográficas: 113
Paginas: 184-195
Archivo PDF: 219.62 Kb.
RESUMEN
En diciembre de 2019, un nuevo coronavirus SARS-CoV-2 irrumpió en Wuhan, China, lo que provocó un brote de neumonía de rápida propagación a nivel mundial. En febrero de 2020, la Organización Mundial de la Salud denominó a esta manifestación clínica enfermedad por coronavirus 2019, COVID-19. Al 21 de junio de 2020, el número global de infectados por COVID-19 era de 8'708,008 con 461,715 fallecidos. Es bien sabido que el sistema respiratorio es la estructura más afectada por el virus, algunas revisiones sistemáticas, numerosos estudios experimentales y los informes de casos han demostrado el neurotropismo potencial del SARS-CoV-2, que implica complicaciones neurológicas que afectan el sistema nervioso central y periférico. Durante los brotes de coronavirus entre 2002-2003 y 2012 (SARS-CoV-1 y MERS-CoV), se produjeron casos con complicaciones neurológicas. Tradicionalmente, los coronavirus afectan al reino animal, concretamente a las especies de mamíferos. Comprometen el sistema respiratorio y, en algunos casos, el sistema nervioso. Se considera que las mutaciones en el genoma vírico permitieron que el virus trascendiera a la especie humana con el paso del tiempo. Esta transición se produjo gracias a huéspedes intermediarios, generalmente mamíferos de Asia Oriental y Oriente Medio. En algunos países, debido a sus costumbres locales, como el suministro de alimentos o el uso actual de estos huéspedes intermedios con fines de movilidad, ha puesto en peligro a los seres humanos. Han llevado a la especie humana a sufrir brotes respiratorios y gastrointestinales a lo largo de los años, sin dejar de lado el compromiso neurológico. Esta revisión pretende analizar las consecuencias neurológicas secundarias a la infección por SARS-CoV-2, las características neuroinvasivas del virus, sus efectos en la pandemia actual, su presentación clínica y la potencial aparición de secuelas.
REFERENCIAS (EN ESTE ARTÍCULO)
Henry R. Etymologia: coronavirus. Emerg Infect Dis. 2020; 26 (5): 1027. Available in: https://dx.doi.org/10.3201/eid2605.et2605
Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol. 1967; 1: 175-178.
Román GC, Spencer PS, Reis J et al. The neurology of COVID-19 revisited: registries. J a proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological. Neurol Sci. 2020; 414: 116884. doi: 10.1016/j.jns.2020.116884.
Alagaili AN, Briese T, Mishra N et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. mBio. 2014; 5 (2): e00884-14.
Qiang X, Xu P, Fang G, Liu WB, Kou K. Using the spike protein feature to predict infection risk and monitor the evolutionary dynamic of coronavirus. Infect Dis Poverty. 2020; 9: 33. Available in: https://doi.org/10.1186/s4029-020-00649-8
Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 2020; 77 (8): 1018-1027. doi: 10.1001/jamaneurol.2020.2065.
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92 (6): 552-555. Available in: https://doi.org/10.1002/jmv.25728
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012; 4 (6): 1011-1033.
Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5.
Rong Y, Wei F, Tang F, Tonhui W. Concomitant neurological symptoms observed in a patient diagnosed with coronavirus disease 2019. Journal of Medical Virology. 2020; 92 (10): 1782-1784. doi: 10.1002/jmv.25888.
Matías-Guiu J, Gomez-Pinedo U, Montero-Escribano P, Gomez-Iglesias P, Porta-Etessam J, Matias-Guiu JA. Should we expect neurological symptoms in the SARS-CoV-2 epidemic? Neurologia (Engl Ed). 2020; 35 (3): 170-175.
Desforges M, Le Coupanec A, Brison E, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol. 2014; 807: 75-96.
Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Corona-virus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015; 202: 89-100.
Chan JF, Kok KH, Zhu Z et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9: 22136, Available in: http://dx.doi.org/10.1080/22221751.2020.1719902
Li, W, Moore, M, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454. Available in: https://doi.org/10.1038/nature02145
Natoli S, Oliveira V, Calabresi P, Maia LF, Pisani A. Does SARS-CoV-2 invade the brain? Translational lessons from animal models. Eur J Neurol 2020; Review. Available in: https://doi.org/10.1111/ene.14277
Chen R, Wang K, Yu J et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in the human and mouse brains. Front Neurol. 2021; 11: 573095.
Dube M. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 2018; 92 (17): e00404-18.
Li YC, Bai WZ, Hirano N, Hayashida T, Taniguchi T, Sugita Y, Tohyama K, Hashikawa T. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol. 2013 Jan 1;521(1):203-12. doi: 10.1002/cne.23171. PMID: 22700307; PMCID: PMC7162419.
Li YC, Bai WZ, Hirano N, Hayashida T,Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012; 163 (2): 628-635. doi: 10.1016/j.virusres.2011.12.021.
Berth SH, Leopold PL, Morfini GN. Virus-induced neuronal dysfunction and degeneration. Front Biosci (Landmark Ed). 2009; 14: 5239-5259. doi: 10.2741/3595.
Giacomelli A, Pezzati L, Conti F et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: a cross-sectional study. Clin Infect Dis. 2020; 71 (15): 889-890.
Gautier JF, Ravussin Y. A new symptom of COVID-19: loss of taste and smell. Obesity. 2020; 28: 848. doi: 10.1002/oby.22809.
Matsuda K, Park CH, Sunden Y et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza- a virus in mice. Vet Pathol. 2004; 41 (2): 101-107. doi: 10.1354/vp.41-2-101.
McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007; 81 (2): 813-821. doi: 10.1128/JVI.02012-06.
Brann DH, Tsukahara T, Weinreb C et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying anosmia in COVID-19 patients. Sci Adv. 2020; 6 (31): eabc5801. [Accessed May 18, 2020]. https://www.biorxiv.org/content/10.1101/2020.03.25.009084v2
Fodoulian L, Tuberosa J, Rossier D, Landis BN, Carleton A, Rodriguez I. SARS-CoV-2 receptor and entry genes are expressed by sustentacular cells in the human olfactory neuroepithelium. iScience. 2020; 23 (12): 101839. [Accessed May 18, 2020] Available in: doi: 10.1016/j.isci.2020.101839.
Bentivoglio M, Kristensson K, Rottenberg ME. Circumventricular organs and parasite neurotropism: neglected gates to the brain? Front Immunol. 2018; 9: 2877.
Dropulic B, Masters CL. Entry of neurotropic arboviruses into the central nervous system: an in vitro study using mouse brain endothelium. J Infect Dis. 1990; 161 (4): 685-691. doi: 10.1093/infdis/ 161.4.685.
Varga Z, Flammer AJ, Steiger P et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395 (10234): 1417-1418. Available in: https://doi.org/10.1016/S0140-6736(20)30937-5
Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Atherosc Thromb Vasc Biol. 2003; 23 (2): 168-75.
Flammer AJ, Anderson T, Celermajer DS et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012; 126: 753-767.
Li W, Moore MJ, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426 (6965): 450-454.
Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271-280.e8.
Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 2005; 24: 1634-43.
Soler MJ, Lloveras J, Batlle D. Enzima conversiva de la angiotensina 2 y su papel emergente en la regulación del sistema renina-angiotensina [Angiotensin converting enzyme 2 and its emerging role in the regulation of the renin angiotensin system]. Med Clin (Barc). 2008; 131 (6): 230-236. doi: 10.1157/13124619.
Wrapp D, Wang N, Corbett KS et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367: 1260-1263.
Danser AH, Koning MM, Admiraal PJ et al. Production of angiotensins I and II at tissue sites in intact pigs. Am J Physiol. 1992; 263 (2 Pt 2): H429-437.
Reneland R, Lithell H. Angiotensin-converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scand J Clin Lab Invest. 1994; 54 (2): 105-111.
Johnston AP, Baker J, De Lisio M, Parise G. Skeletal muscle myoblasts possess a stretch-responsive local angiotensin signalling system. J Renin Angiotensin Aldosterone Syst. 2011; 12 (2): 75-84.
De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000; 52 (3): 415-472.
Miura S, Imaizumi S, Saku K. Recent progress in molecular mechanisms of angiotensin II type 1 and 2 receptors. Curr Pharm Des. 2013; 19 (17): 2981-2987.
Zhang L, Du J, Hu Z, Han G, Delafontaine P, Garcia G, Mitch WE. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J Am Soc Nephrol. 2009; 20 (3): 604-612.
Painemal P, Acuna MJ, Riquelme C, Brandan E, Cabello-Verrugio C. Transforming growth factor type beta 1 increases the expression of angiotensin II receptor type 2 by a SMAD- and p38 MAPK dependent mechanism in skeletal muscle. Biofactors. 2013; 39 (4): 467-475.
Malendowicz SL, Ennezat PV, Testa M, Murray L, Sonnenblick EH, Evans T, LeJemtel TH. Angiotensin II receptor subtypes in the skeletal muscle vasculature of patients with severe congestive heart failure. Circulation. 2000; 102 (18): 2210-2213.
Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin- angiotensin system: an old player with novel functions in skeletal muscle. Med Res Rev. 2015; 35 (3): 437-463. doi: 10.1002/med.21343.
Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci. 2020; 413: 116832. doi: 10.1016/j.jns.2020.116832.
Su L, Ma X, Yu H et al. The different clinical characteristics of corona virus disease cases between children and their families in China - the character of children with COVID-19. Emerg Microbes Infect. 2020; 9: 707-713.
Li Y, Li H, Fan R et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016; 59: 163-169. Available in: http://dx.doi.org/10.1159/000453066
Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics. 2004; 113: e73-76.
Mao L, Jin H, Wang M et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77 (6): 683-690.
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020; 80 (6): 607-613. doi: 10.1016/j.jinf.2020.03.037.
Jin X, Lian J-S, Hu J-H et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020; 69 (6): 1002-1009. doi: 10.1136/gutjnl-2020-320926.
Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing, J. Inf. Secur. 2020; 80: 401-406. Available in: https://doi.org/10.1016/j.jinf.2020.02.018.
Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395 507-513.
Li LQ, Huang T, Wang YQ et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020; 92: 577-583. Available in: https://doi.org/10.1002/jmv.25757
Moriguchi T, Harii N, Goto J et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020; 94: 55-58. doi: 10.1016/j.ijid.2020.03.062.
Filatov A, Sharma P, Hindi F et al. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus. 2020; 12 (3): e7352. Available in: https://doi.org/10.7759/cureus.7352.
Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020; 88: 945-946. doi: 10.1016/j.bbi.2020.04.017.
Li Y, Li M, Wang M et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020; 5 (3): 279-284. doi: 10.1136/svn-2020-000431.
61 Matthews AE, Weiss SR, Paterson Y. Murine hepatitis virus— A model for virus induced CNS demyelination. J Neurovirol. 2002; 8 (2): 76-85.
Cristallo A, Gambaro F, Biamonti G, Ferrante P, Battaglia M, Cereda PM. Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients. New Microbiol. 1997; 20 (2): 105-114.
Murray RS, Brown B, Brian D, Cabirac GF. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann Neurol. 1992; 31 (5): 525-33.
Frontera JA. Metabolic encephalopathies in the critical care unit. Continuum (Minneap Minn). 2012; 18 (3): 611-639. doi: 10.1212/01.CON.0000415431.07019.c2.
Ahmed S, Leurent B, Sampson EL. Risk factors for incident delirium among older people in acute hospital medical units: a systematic review and meta-analysis. Age Ageing. 2014; 43 (3): 326-333. doi: 10.1093/ageing/afu022.
Lau SK, Woo PC, Yip CC et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006; 44 (6): 2063-2071. doi: 10.1128/JCM.02614-05.
Zhang Y, Xiao M, Zhang S et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020; 382 (17): e38. Available in: NEJM.org https://doi.org/10.1056/NEJMc2007575
Klok FA, Kruip MJHA, van der Meer NJM et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145-147. Available in: https://doi.org/10.1016/j.thromres.2020.04.013.
Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respir Res. 2020; 21 (1): 74. doi: 10.1186/s12931-020-01338-8.
Oxley TJ, Mocco J, Majidi S et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med. 2020; 382 (20): e60. doi: 10.1056/NEJMc2009787.
Guan WJ, Ni ZY, Hu Y, Liang WH et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382: 1708-1720. Available in: https://doi.org/10.1056/NEJMoa2002032
Oudit GY, Kassiri Z, Jiang C et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Investig. 2009; 39: 618-625.
Christopher SYH, Carol TH, Wong YL. Challenges in adapting existing hyperacute stroke protocols by a tertiary neuroscience centre for patients with COVID-19 in Singapore. Int J Cerebrovasc Dis Stroke. 2020; 3: 125. Available in: https://doi.org/10.29011/2688-8734.000025
Bhatia R, Sylaja PN, Padma Srivastava MV et al. Consensus statement – suggested recommendations for acute stroke management during the COVID-19 pandemic: expert group on behalf of the Indian Stroke Association. Ann Indian Acad Neurol. 2020; 23 (Suppl 1): S15-S23.
Helms J, Kremer S, Merdji H, et al., Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020; 382 (23): 2268-2270. Available in: https://doi.org/10.1056/NEJMc2008597
Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020; 95 (5): e601-e605. doi: 10.1212/WNL.0000000000009619S.
Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. medRxiv Prep. (2020). [Accessed 4/24/2020] Available in: https://doi.org/10.1101/2020.03.16.20035105
Yanga J, Zhenga Y, Goua X et al. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91-95. doi: 10.1016/j.ijid.2020.03.017.
Lechien JR, Chiesa-Estomba CM, De Siati DR et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277 (8): 2251-2261. doi: 10.1007/s00405-020-05965-1.
Xydakis MS, Dehgani-Mobaraki P, Holbrook EH et al. Smell and taste dysfunction in patients with COVID-19 [published online ahead of print. Lancet Infect Dis. 2020; 20 (9): 1015-1016. doi: 10.1016/S1473-3099(20)30293-0.
Bagheri SHR, Asghari AM, Farhadi M et al. Coincidence of COVID-19 epidemic and olfactory dysfunction outbreak. medRxiv; 2020. doi: 10.1101/2020.03.23.20041889.
Sriwijitalai W, Wiwanitkit V. Hearing loss and COVID-19: a note. Am J Otolaryngol. 2020; 41 (3): 102473. doi: 10.1016/j.amjoto.2020.102473.
Suzuki M, Saito K, Min WP et al. Identification of viruses in patients with postviral olfactory dysfunction. Laryngoscope. 2007; 117 (2): 272-277.
Van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015; 235 (2): 277-287. Available in: https://doi.org/10.1002/path.4461
Yan, CH, Faraji, F, Prajapati, DP, Ostrander, BT, DeConde, AS. Self-reported olfactory loss associates with outpatient clinical course in COVID-19. Int Forum Allergy Rhinol. 2020; 10 (7): 821-831.
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82: 7264-7275.
Maximova OA, Bernbaum JG, Pletnev AG. West Nile virus spreads transsynaptically within the pathways of motor control anatomical and ultrastructural mapping of neuronal virus infection in the primate central nervous system. Plos Negl Trop Dis. 2016; 10 (9): e00004980.
Bilinska K, Jakubowska P, Von Bartheld ChS, Butow R. Expression of the SARS-CoV-2 entry proteins ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020; 11 (11): 1555-1562. doi: 10.1021/acschemneuro.0c00210.
Heydel JM, Coelho A, Thiebaud N et al. Odorant binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events odorant-binding proteins and metabolizing enzymes. Anat Rec. 2013; 196: 133-134.
Cornblath DR, McArthur JC, Kennedy PGE, Witte AS, Griffin JW. Inflammatory demyelinating peripheral neuropathies associated with human T-cell lymphotropic virus type III infection. Ann Neurol. 1987; 21: 32-40.
Ormerod IE, Cockerell OC. Guillain-Barré syndrome after herpes zoster infection: a report of 2 cases. Eur Neurol. 1993; 33 (2): 156-158. doi: 10.1159/000116924.
Hartung HP, Pollard JD, Harvey GK, Toyka KV. Immunopathogenesis and treatment of the Guillain-Barré syndrome--Part I. Muscle Nerve. 1995; 18 (2): 137-153. doi: 10.1002/mus.880180202.
Ahmed S, Libman R, Wesson K, Ahmed F, Einberg K. Guillain-Barré syndrome: An unusual presentation of West Nile virus infection. Neurology. 2000; 55 (1): 144-146. doi: 10.1212/wnl.55.1.144.
Sheikh KA, Nachamkin I, Ho TW et al. Campylobacter jejuni lipopolysaccharides in Guillain-Barré syndrome: molecular mimicry and host susceptibility. Neurology. 1998; 51 (2): 371-378. doi: 10.1212/wnl.51.2.371.
Parra B, Lizarazo J, Jiménez-Arango JA et al. Guillain-Barré syndrome associated with Zika virus infection in Colombia. N Engl J Med. 2016; 375 (16): 1513-1523. doi: 10.1056/NEJMoa1605564.
Kim JE, Heo JH, Kim HO et al. Neurological complications during treatment of middle east respiratory syndrome. J Clin Neurol. 2017; 13 (3): 227-233. doi: 10.3988/jcn.2017.13.3.227.
Virani A, Rabold E, Hanson T et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection. IDCases. 2020; 20: e00771.
Zhao H, Shen D, Zhou H, Liu J, Chen S, Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet. 2020; 19 (5): P383-384. Available in: https://doi.org/10.1016/S1474-4422(20)30109-5
Tsai L, Hsieh S, Chao C et al. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol. 2004; 61 (11): 1669-1673. doi: 10.1001/archneur.61.11.1669.
Toscano G, Palmerini F, Ravaglia S et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med. 2020; NEJMc2009191. Available in: https://doi.org/10.1056/NEJMc2009191.
Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: A case report. J Clin Neurosci. 2020; 76: 233-235. doi: 10.1016/j.jocn.2020.04.062.
Holshue ML, Debolt C, Lindquist S et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020; 382: 929-936.
Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. 2020; 194: 105921. doi: 10.1016/j.clineuro.2020.105921
Dinkin M, Gao V, Kahan J et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. Neurology. 2020; 95 (5): 221-223. doi: 10.1212/WNL.0000000000009700.
Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020; 130 (7): 1787.
Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15;395(10223):470-473. doi: 10.1016/S0140-6736(20)30185-9. Epub 2020 Jan 24. Erratum in: Lancet. 2020 Jan 29;: PMID: 31986257; PMCID: PMC7135038.
Yang X, Yu Y, Xu J et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8 (5): 475-481. Available in: https://doi.org/10.1016/S2213-2600(20)30079-5.
Chen LL, Hsu CW, Tian YC, Fang JT, Rhabdomyolysis associated with acute renal failure in patients with severe acute respiratory syndrome, Int. J. Clin. Pract. 2005; 59:1162.1166.
Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020; 26 (7): 1618-1620. doi:10.3201/eid2607.200445
Suwanwongse K, Shabarek N, Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus J Med Sci. 2020; 12: e7561. Available in: https://doi.org/10.7759/cureus.7561
Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: a literature review. J Clin Neurosci. 2020; 77: 8-12. doi: 10.1016/j.jocn.2020.05.017.
Sun G, Haginoya K, Dai H et al. Intramuscular renin-angiotensin system is activated in human muscular dystrophy. J Neurol Sci. 2009; 280 (1-2): 40-48. doi: 10.1016/j.jns.2009.01.020.
Morales MG, Cabrera D, Cespedes C et al. Inhibition of the angiotensin-converting enzyme decreases skeletal muscle fibrosis in dystrophic mice by a diminution in the expression and activity of connective tissue growth factor (CTGF/CCN-2). Cell Tissue Res. 2013; 353 (1): 173-187.