2022, Número 2
<< Anterior Siguiente >>
Rev Cuba Endoc 2022; 33 (2)
Fisiopatología del síndrome de ovario poliquístico
Monteagudo PG
Idioma: Español
Referencias bibliográficas: 100
Paginas:
Archivo PDF: 212.22 Kb.
RESUMEN
Introducción:
En la génesis del síndrome de ovario poliquístico intervienen múltiples factores sistémicos y locales que tienen una relación multidireccional sobre los que persisten muchas cuestiones aún sin dilucidar y cierta confusión e incertidumbre.
Objetivo:
Describir el enfoque actual sobre las causas y los mecanismos involucrados en el origen y desarrollo del síndrome de ovario poliquístico.
Métodos:
Se realizó una revisión bibliográfica tipo estado del arte. Se revisaron alrededor de 250 artículos, que se obtuvieron de las bases PubMed, Medline, SciELO y Google Académico. Se describen los factores y las vías que se proponen para explicar la etiopatogenia y fisiopatología de alteraciones genéticas, ambientales, endocrinas y metabólicas asociadas al síndrome y su expresión clínica.
Conclusiones:
La fisiopatología del síndrome de ovario poliquístico es compleja. Muchos aspectos permanecen sin esclarecerse, pero se tiene cada vez más conocimiento que aporta luz a los enigmas que aún persisten y a la comprensión de fenómenos previamente desconocidos. Existe el convencimiento creciente de que la alteración central es a nivel ovárico, que el síndrome es heterogéneo en todos sus elementos y que conocer la gran diversidad de factores y mecanismos que intervienen en su etiología y patogenia es fundamental no sólo desde lo científico, sino también por su utilidad práctica.
REFERENCIAS (EN ESTE ARTÍCULO)
Fenichel P, Rougier C, Hieronimus S, Chevalier N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? Ann Endocrinol (París). 2017;78(3):176-85. DOI: https://doi.org/10.1016/j.ando.2017.04.0241.
Blesson CS, Chappell NR. Polycystic Ovary Syndrome: A Multifaceted Enigma. Endocrinol Diabetes Open Access. 2018 [acceso: 27/12/2021];1(1):102-4. Disponible en: https://www.researchgate.net/publication/328550469_Polycystic_Ovary_Syndrome_A_Multifaceted_Enigma2.
Raperport C, Homburg R. The Source of Polycystic Ovarian Syndrome. Clin Med Insights Reprod Health. 2019;13. DOI: https://doi.org/10.1177/11795581198714673.
Charifson MA, Trumble BC. Evolutionary origins of polycystic ovary syndrome: An environmental mismatch disorder. Evol Med Public Health. 2019;2019(1):50-63. DOI: https://doi.org/10.1093/emph/eoz0114.
Ablan Candia F. Fisiopatología del síndrome de ovario poliquístico. Rev Obstet Ginecol Venez. 2016 [acceso: 27/12/2021];76(Supl 1):S17-24. Disponible en: http://ve.scielo.org/scielo.php?script=sci_issuetoc&pid=0048-773220160003&lng=es&nrm=iso5.
Barba Evia JR. Síndrome de ovario poliquístico. Rev Mex Patol Clin Med Lab. 2019 [acceso: 27/12/2021];66(2):107-23. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=893216.
De Leo V, Musacchio MC, Cappelli V, Massaro MG, Morgante G, Petraglia F. Genetic, hormonal and metabolic aspects of PCOS: an update. Reprod Biol Endocrinol. 2016;14(1):38-55. DOI: https://doi.org/10.1186/s12958-016-0173-x7.
Azziz R. Polycystic Ovary Syndrome. Obstet Gynecol. 2018;132:321-36. DOI: https://doi.org/10.1097/AOG.00000000000026988.
Vallejo Hernández R, Rosa González ME, Gómez González del Tánago P, Ortega Polar E, Panadero Carlavilla FJ. Síndrome de ovario poliquístico. Panorama Actual Med. 2019[acceso: 27/12/2021];43(421):180-4. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=68738469.
Ovies G, Sardiñas I, Monteagudo G, Martínez de Santelices A. Lardoext R. Agregación familiar de causa genética en familiares de primer grado de mujeres con síndrome de ovarios poliquísticos. Rev Cubana Endocrinol. 2015 [acceso: 27/12/2021];26(1):21-32. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-2953201500010000310.
Abbott DH, Dumesic DA, Levine JE. Hyperandrogenic Origins of Polycystic Ovary Syndrome - Implications for Pathophysiology and Therapy. Expert Rev Endocrinol Metab. 2019;14(2):131-43. DOI: https://doi.org/10.1080/17446651.2019.157652211.
Mykhalchenko K, Lizneva DL, Trofimova T, Walker W, Suturina L, Diamond MP, et al. Genetics of the polycystic ovary syndrome. Expert Rev Mol Diagn. 2017;17(7):723-33. DOI: https://doi.org/10.1080/14737159.2017.134083312.
Crespo RP, Bachega TA, Mendonça BB, Gomes LG. An update of genetic basis of PCOS pathogenesis. Arch Endocrinol Metab. 2018;62(3):352-61. DOI: https://doi.org/10.20945/2359-399700000004913.
Hiam D, Moreno A, Teede HJ, Laven JS, Stepto NK, Moran LJ, et al. The Genetics of Polycystic Ovary Syndrome: An Overview of Candidate Gene Systematic Reviews and Genome-Wide Association Studies. J Clin Med. 2019;8(10):1606. DOI: https://doi.org/10.3390/jcm810160614.
Shaaban Z, Khoradmehr A, Jafarzadeh MR, Tamadon A. Pathophysiological mechanisms of gonadotropins and steroid hormones related genes in etiology of polycystic ovary syndrome. Iran J Basic Med Sci. 2019;22:3-16. DOI: https://doi.org/10.22038/ijbms.2018.31776.764615.
Khatun M, Arffman RK, Lavogina D, Kangasniemi M, Laru J, Ahtikoski A, et al. Women with polycystic ovary syndrome present with altered endometrial expression of stanniocalcin-1. Biol Reprod. 2020;102(2):306-15. DOI: https://doi.org/10.1093/biolre/ioz18016.
Dapas M, Dunaif A. The contribution of rare genetic variants to the pathogenesis of polycystic ovary syndrome. Curr Opin Endocr Metab Res. 2020;12:26-32. DOI: https://doi.org/10.1016/j.coemr.2020.02.01117.
Zhang J, Bao Y, Zhou X, Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod Biol Endocrinol. 2019;17(1):67. DOI: https://doi.org/10.1186/s12958-019-0509-418.
Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-Scale Genome-Wide Meta Analysis of Polycystic Ovary Syndrome Suggests Shared Genetic Architecture for Different Diagnosis Criteria. PLoS Genet. 2018;14(12):e1007813. DOI: https://doi.org/10.1371/journal.pgen.100781319.
Li S, Zhu D, Duan H, Tan Q. The epigenomics of polycystic ovarian syndrome: from pathogenesis to clinical manifestations. Gynecol Endocrinol. 2016;32(12):942-6. DOI: https://doi.org/10.1080/09513590.2016.120340920.
Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med. 2019;25(12):1894-1904. DOI: https://doi.org/10.1038/s41591-019-0666-121.
Carrasco A, Recabarren MP, Rojas PP, Gutiérrez M, Morales K, Sir Petermann, et al. Prenatal testosterone exposure disrupts insulin secretion and promotes insulin resistance. Sci Rep. 2020;10(1):404. DOI: https://doi.org/10.1038/s41598-019-57197-x22.
Sadrzadeh S, Hui EV, Schoonmade LJ, Painter RC, Lambalk CB. Birthweight and PCOS: systematic review and meta-analysis. Hum Reprod Open. 2017;2017(2):hox010. DOI: https://doi.org/10.1093/hropen/hox01023.
Valgeirsdottir H, Vanky E, Sundström I, Roos N, Løvvik TS, Stephansson O. Prenatal exposures and birth indices, and subsequent risk of polycystic ovary syndrome: a national registry-based cohort study. BJOG. 2019;126(2):244-51. DOI: https://doi.org/10.1111/1471-0528.1523624.
Bell GA, Sundaram R, Mumford SL, Park H, Mills J, Bell EM, et al. Maternal polycystic ovarian syndrome and early offspring development. Hum Reprod. 2018;33(7):1307-15. DOI: https://doi.org/10.1093/humrep/dey08725.
Vanky E, Hanem DG, Abbott DH. Children born to women with polycystic ovary syndrome short and long term impacts on health and development. Fertil. Steril. 2019;111(6):1065-75. DOI: https://doi.org/10.1016/j.fertnstert.2019.03.01526.
Dere KA, Koffi KG, Niamke AG, Bita DV, Manhan KE, Tiahou G. Polycystic ovary syndrome: Impact of obesity and aging on the profile of gonadotrophin and adrenal hormones. Int J Med Sci. 2018;10(7):79-85. DOI: https://doi.org/10.5897/IJMMS2018.134827.
Barber TM, Hanson P, Weickert MO, Franks S. Obesity and Polycystic Ovary Syndrome: Implications for Pathogenesis and Novel Management Strategies. Clin Med Insights Reprod Health. 2019;13. DOI: https://doi.org/10.1177/117955811987404228.
Kite C, Lahart IM, Afzal I, Broom DR, Randeva H, Kyrou I, et al. Exercise, or exercise and diet for the management of polycystic ovary syndrome: a systematic review and meta-analysis. Syst Rev. 2019;8(1):51-79. DOI: https://doi.org/10.1186/s13643-019-0962-329.
Kshetrimayum C, Sharma A, Mishra VV, Kumar S. Polycystic ovarian syndrome: Environmental/occupational, lifestyle factors; an overview. J Turk Ger Gynecol Assoc. 2019;20(4):255-63. DOI: https://doi.org/10.4274/jtgga.galenos.2019.2018.014230.
Li Y, Zhang MW, Wang YJ. Association between the persistent organic pollutants and polycystic ovary syndrome: A protocol for a systematic review and meta-analysis. Medicine (Baltimore). 2019;98(34):e16948. DOI: https://doi.org/10.1097/MD.000000000001694831.
Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary síndrome. Nat Rev Dis Primers. 2016;2:16057. DOI: https://doi.org/10.1038/nrdp.2016.5732.
Delcour C, Robin G, Young J, Dewailly D. PCOS and Hyperprolactinemia: what do we know in 2019? Clin Med Insights Reprod Health. 2019;13:1179558119871921. DOI: https://doi.org/10.1177/117955811987192133.
Rosenfield RL, Barnes RB, Cara JF, Lucky AW. Dysregulation of cytochrome P450c 17 alpha as the cause of polycystic ovarian syndrome. Fertil Steril. 1990 [acceso: 27/12/2021];53(5):785-91. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0015028216535109?via%3Dihub34.
Peng HM, Im SC, Pearl NM, Turcu AF, Rege J, Waskell L, et al. Cytochrome b5 Activates the 17,20-Lyase Activity of Human Cytochrome P450 17A1 by Increasing the Coupling of NADPH Consumption to Androgen Production. Biochemistry. 2019;55(31):4356-65. DOI: https://doi.org/10.1021/acs.biochem.6b0053235.
Ventura E, Hernández M. La esteroidogénesis en el síndrome de ovarios poliquísticos. Gac Med Mex. 2019;155(2):184-90. DOI: https://doi.org/10.24875/GMM.1800395536.
Rodriguez V, Bertoldo MJ. The Mechanism of Androgen Actions in PCOS Etiology. Med. Sci. 2019;7(9):89-101. DOI: https://doi.org/10.3390/medsci709008937.
Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14(4):367-78. DOI: https://doi.org/10.1093/humupd/dmn01538.
Guedikian AA, Lee AY, Grogan TR, Abbott DH, Largaespada K, Chazenbalk GD, et al. Reproductive and metabolic determinants of granulosa cell dysfunction in normal-weight women with polycystic ovary syndrome. Fertil Steril. 2018;109(3):508-15. DOI: https://doi.org/10.1016/j.fertnstert.2017.11.01739.
Hu J, Tang T, Zeng Z, Wu J, Tan X, Yan J. The expression of small RNAs in exosomes of follicular fluid altered in human polycystic ovarian syndrome. Peer J. 2020;8:e8640. DOI: https://doi.org/10.7717/peerj.864040.
Liu C, Peng J, Matzuk MM, Yao HH. Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun. 2015;6:6934. DOI: https://doi.org/10.1038/ncomms793441.
Chappell NR, Zhou B, Schutt AK, Gibbons WE, Blesson CS. Prenatal androgen induced lean PCOS impairs mitochondria and mRNA profiles in oocytes. Endocr Connect. 2020;9(3):261-70. DOI: https://doi.org/10.1530/EC-19-055342.
Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau S. Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22(6):709-24. DOI: https://doi.org/10.1093/humupd/dmw02743.
Vitale SG, Riemma G, Cianci A. Antimüllerian hormone in polycystic ovarian syndrome: from a key role in the pathogenesis to a sentinel for pre-term birth prediction. Fertil Steril. 2020;113(2):335-6. DOI: https://doi.org/10.1016/j.fertnstert.2019.10.03644.
Tata B, Mimouni NE, Barbotin AL, Malone SA, Loyens A, Pigny P, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med. 2018;24(6):834-6. DOI: https://doi.org/10.1038/s41591-018-0035-545.
Azhary JM, Harada M, Kunitomi C, Kusamoto A, Takahashi N, Nose E, et al. Androgens Increase Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS. Endocrinology. 2020;161(2):bqaa015. DOI: https://doi.org/10.1210/endocr/bqaa01546.
Diamanti E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981-1030. DOI: https://doi.org/10.1210/er.2011-103447.
Franik G, Bizon A, Wloch S, Pluta D, Blukacz L, Milnerowicz H, et al. The effect of abdominal obesity in patients with polycystic ovary syndrome on metabolic parameters. Eur Rev Med Pharmacol Sci. 2017 [acceso: 27/12/2021];21(21):4755-61. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29164590/48.
Sanchez Gaitan E. Actualización del manejo de síndrome de ovario poliquístico. Rev Med. Sinerg. 2019 [acceso: 27/12/2021];4(12):e322. Disponible en: https://revistamedicasinergia.com/index.php/rms/article/view/32249.
Orrego A. Updated Approach to the Pathophysiology, Classification and Genetics of Polycystic Ovarian Syndrome. RCEDM. 2019 [acceso: 27/12/2021];6(2):101-6. Disponible en: http://revistaendocrino.org/index.php/rcedm/article/view/48450.
Chang RJ. The reproductive phenotype in polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2007;3(10):688-95. DOI: https://doi.org/10.1038/ncpendmet063751.
Mueller A, Gooren LJ, Naton S, Cupisti S, Beckmann MW, Dittrich R. Prevalence of polycystic ovary syndrome and hyperandrogenemia in female-to-male transsexuals. J Clin Endocrinol Metab. 2008;93(4):1408-11. DOI: https://doi.org/10.1210/jc.2007-280852.
Ma Y, Andrisse S, Chen Y, Childress S, Xue P, Wang Z, et al. Androgen Receptor in the Ovary Theca Cells Plays a Critical Role in Androgen-Induced Reproductive Dysfunction. Endocrinology. 2017;158(1):98-108. DOI: https://doi.org/10.1210/en.2016-160853. . [ Links ]
Hirshfeld J, Barnes RB, Ehrmann DA, Caruso A, Mortensen MM, Rosenfield RL. Characterization of functionally typical and atypical types of polycystic ovary syndrome. J Clin Endocrinol Metab. 2009;94(5):1587-94. DOI: https://doi.org/10.1210/jc.2008-224854.
Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467-520. DOI: https://doi.org/10.1210/er.2015-110455.
Moore AM, Campbell RE. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol. 2016;160:106-17. DOI: https://doi.org/10.1016/j.jsbmb.2015.10.00256.
Carvalho LM, dos Reis FM, Candido AL, Nunes FF, Ferreira CN, Gomes KB. Polycystic Ovary Syndrome as a systemic disease with multiple molecular pathways: a narrative review. Endocr Regul. 2018;52(4):208-21. DOI: https://doi.org/10.2478/enr-2018-002657.
Bahri M, Boyle JA, Tay CT, Vanky E, Teede HJ, Joham AE, et al. Polycystic ovary syndrome and adverse pregnancy outcomes: Current state of knowledge, challenges and potential implications for practice. Clin Endocrinol (Oxf). 2018;88(6):761-9. DOI: https://doi.org/10.1111/cen.1357958.
Wedel Herrera K. Disruptores endocrinos: un riesgo para la salud reproductiva. Rev Med Sinerg. 2019 [acceso: 27/12/2021];4(6):24-30. Disponible en: https://revistamedicasinergia.com/index.php/rms/article/view/24259.
Palioura E, Kandaraki E, Diamanti E. Endocrine disruptors and polycystic ovary syndrome: a focus on Bisphenol A and its potential pathophysiological aspects. Horm Mol Biol Clin Investig. 2014;17(3):137-44. DOI: https://doi.org/10.1515/hmbci-2014-000360.
Lumme J, Sebert S, Pesonen P, Piltonen T, Järvelin MR, Herzig KH, et al. Vitamin D Levels in Women with Polycystic Ovary Syndrome: A Population-Based Study. Nutrients. 2019;11(11):2831. DOI: https://doi.org/10.3390/nu1111283161.
Deswal R, Nanda S, Dang AS. Association of Luteinizing hormone and LH receptor gene polymorphism with susceptibility of Polycystic ovary syndrome. Syst Biol Reprod Med. 2019;65(5):400-8. DOI: https://doi.org/10.1080/19396368.2019.159521762.
Acosta Cedeño A, Monteagudo Peña G, Menocal Alayón A. Patrón Hormonal de mujeres con diagnóstico clínico y ecográfico del síndrome de ovarios poliquísticos. Rev Cubana Endocrinol. 2004 [acceso: 27/12/2021];15(2):1561-2953. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-2953200400020000363.
Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Invest. 1998;101(12):2622-9. DOI: https://doi.org/10.1172/JCI208164.
Sen A, Prizant H, Light A, Biswas A, Hayes E, Lee HJ, et al. Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc Natl Acad Sci. 2014;111(8):3008-13. DOI: https://doi.org/10.1073/pnas.131897811165.
Erickson GF, Magoffin DA, Garzo VG, Cheung AP, Chang RJ. Granulosa cells of polycystic ovaries: are they normal or abnormal? Hum Reprod. 1992;7(3):293-9. DOI: https://doi.org/10.1093/oxfordjournals.humrep.a13763866.
Hsueh AJ, Kawamura K, Cheng Y, Fauser BC. Intraovarian control of early folliculogenesis. Endocr Rev. 2015;36(1):1-24. DOI: https://doi.org/10.1210/er.2014-102067.
Pellatt L, Rice S, Dilaver N, Heshri A, Galea R, Brincat M, et al. Anti-Mullerian hormone reduces follicle sensitivity to follicle-stimulating hormone in human granulosa cells. Fertil Steril. 2011;96(5):1246-51. DOI: https://doi.org/10.1016/j.fertnstert.2011.08.01568.
Alebić MŠ, Stojanović N, Duhamel A, Dewailly D. The phenotypic diversity in per-follicle anti-Müllerian hormone production in polycystic ovary syndrome. Hum Reprod. 2015;30(8):1927-33. DOI: https://doi.org/10.1093/humrep/dev13169. . [ Links ]
Dumesic DA, Abbott DH. Implications of polycystic ovary syndrome on oocyte development. Semin Reprod Med. 2008;26(1):53-61. DOI: https://doi.org/10.1055/s-2007-99292570. . [ Links ]
La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC, et al. Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update. 2010;16(2):113-30. DOI: https://doi.org/10.1093/humupd/dmp03671.
Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, et al. Novel role for anti-Mullerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun. 2016;12(7):10055. DOI: https://doi.org/10.1038/ncomms1005572.
Le MT, Le VN, Le DD, Nguyen VQ, Chen C, Cao NT. Exploration of the role of anti-Mullerian hormone and LH/FSH ratio in diagnosis of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2019;90(4):579-85. DOI: https://doi.org/10.1111/cen.1393473.
Teede H, Misso M, Tassone EC, Dewailly D, Ng EH, Azziz R, et al. Anti-Müllerian Hormone in PCOS: A Review Informing International Guidelines. Trends Endocrinol Metab. 2019;30(7):467-78. DOI: https://doi.org/10.1016/j.tem.2019.04.00674.
Stocco C. Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 2008;73(5):473-87. DOI: https://doi.org/10.1016/j.esteroides.2008.01.01775.
Chang HM, Klausen C, Leung PC. Anti-Mullerian hormone inhibits follicle-stimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil Steril. 2013;100(2):585-92.e1. DOI: https://doi.org/10.1016/j.fertnstert.2013.04.01976.
Decanter C. Oocyte Quality in PCOS. Infertility in Women with Polycystic Ovary Syndrome. Sprin Intern Publis Switzer. 2018;31-9. DOI: https://doi.org/10.1007/978-3-319-45534-177.
Giovanni P, Monteleone P, Parisen MR, Matteucci C, Ruggiero M, Cela V, et al. Growth factors and folliculogenesis in polycystic ovary patients. Expert Rev Endocrinol Metab. 2007;2(2):215-23. DOI: https://doi.org/10.1586/17446651.2.2.21578.
Qiao J, Feng HL. Extra and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17(1):17-33. DOI: https://doi.org/10.1093/humupd/dmq03279.
Piomboni P, Focarelli R, Capaldo A, Stendardi A, Cappelli V, Cianci A, et al. Protein modification as oxidative stress marker in follicular fluid from women with polycystic ovary syndrome: the effect of inositol and metformin. J Assist Reprod Genet. 2014;31(10):1269-76. DOI: https://doi.org/10.1007/s10815-014-0307-z80.
Estienne A, Pierre A, di Clemente N, Picard JY, Jarrier P, Mansanet C, et al. Anti-Mullerian hormone regulation by the bone morphogenetic proteins in the sheep ovary: deciphering a direct regulatory pathway. Endocrinology. 2015;156(1):301-13. DOI: https://doi.org/10.1210/en.2014-155181.
Hsueh AJ, Billig H, Tsafriri A. Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev. 1994;15(6):707-24. DOI: https://doi.org/10.1210/edrv-15-6-70782.
Seifer DB, Merhi Z. Is AMH a regulator of follicular atresia? J Assist Reprod Genet. 2014;31(11):1403-7. DOI: https://doi.org/10.1007/s10815-014-0328-783.
Rosa AC. Conceito, epidemiologia e fisiopatologia aplicada à prática clinica. Síndrome dos ovários policísticos. São Paulo: Federação Brasileira das Associações de Ginecologia e Obstetrícia (FEBRASGO); 2018. pp. 1-15. [ Links ]
Vázquez JC, Calero JL, Carías JP, Monteagudo G. Correspondencia clínica, hormonal y ecográfica en el diagnóstico del síndrome de ovarios poliquísticos. Rev. Cubana Endocrinol. 2016 [acceso: 27/12/2021];27(1):1561-2953. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-2953201600010000285.
Kyritsi EM, Dimitriadis GK, Angelousi A, Mehta H, Shad A, Mytilinaiou M, et al. The value of prolactin in predicting prolactinoma in hyperprolactinaemic polycystic ovarian syndrome. Eur J Clin Invest. 2018;48(7):e12961. DOI: https://doi.org/10.1111/eci.1296186.
Mendoza Rivas AO. Diagnóstico ecográfico del síndrome de ovario poliquístico. Rev Obstet Ginecol Venez. 2016 [acceso: 27/12/2021];76(Supl 1):S35-8. Disponible en: http://ve.scielo.org/scielo.php?script=sci_issuetoc&pid=0048-773220160003&lng=es&nrm=iso87.
Capecce E, Pelanda M, Dicugno M, González E, Buongiorno G, Corazza N, et al. La hormona antimülleriana como marcador de función ovárica. Rev Argent Endocrinol Metab. 2016 [acceso: 27/12/2021];53(3):106-13. Disponible en: https://www.sciencedirect.com/science/article/pii/S032646101630037788.
Dumont A, Plouvier P, Dewailly D. Follicle Excess and Abnormalities in Women with PCOS: Pathophysiology, Assessment and Clinical Role. Infertility in Women with Polycystic Ovary Syndrome. Sprin Intern Publis Switzer. 2018:89-105. DOI: https://doi.org/10.1007/978-3-319-45534-189.
Benagiano G, Bianchi P, Brosens I. Endometrial Receptivity in PCOS. Infertility in Women with Polycystic Ovary Syndrome. Sprin Intern Publis Switzer. 2018:41- 60. DOI: https://doi.org/10.1007/978-3-319-45534-190.
Kevenaar ME, Themmen AP, Laven JS, Sonntag B, Fong SL, Uitterlinden AG, et al. Anti-Müllerian hormone and anti-Müllerian hormone type II receptor polymorphisms are associated with follicular phase estradiol levels in normo-ovulatory women. Hum Reprod. 2007;22(6):1547-54. DOI: https://doi.org/10.1093/humrep/dem03691.
Giudice LC. Endometrium in PCOS: Implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20(2):235-44. DOI: https://doi.org/10.1016/j.beem.2006.03.00592.
Hu KL, Liu FT, Xu H, Li R, Qiao J. High antimüllerian hormone levels are associated with preterm delivery in patients with polycystic ovary syndrome. Fertil Steril. 2020;113(2):444-452. DOI: https://doi.org/10.1016/j.fertnstert.2019.09.03993.
Yao K, Bian C, Zhao X. Association of polycystic ovary syndrome with metabolic syndrome and gestational diabetes: Aggravated complication of pregnancy. Exp Ther Med. 2017;14(2):1271-6. DOI: https://doi.org/10.3892/etm.2017.464294.
Boomsma CM, Eijkemans MJ, Hughes EG, Visser GH, Fauser BC, Macklon NS. A meta-analysis of pregnancy outcomes in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12(6):673-83. DOI: https://doi.org/10.1093/humupd/dml03695.
Escobar HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-84. DOI: https://doi.org/10.1038/nrendo.2018.2496.
Orio F, Muscogiuri G, Nese C, Palomba S, Savastano S, Tafuri D, et al. Obesity, type 2 diabetes mellitus and cardiovascular disease risk: an uptodate in the management of polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2016;207:214-9. DOI: https://doi.org/10.1016/j.ejogrb.2016.08.02697.
Carmenate Pérez JV, Monteagudo Peña G, Peix González A, Quiroz Luis JJ, Ovies Carballo G, González Domínguez N. Enfermedad cardiovascular subclínica en mujeres de edad mediana con síndrome de ovario poliquístico. Rev Cubana Cardiol Cirug Cardiovasc. 2017 [acceso: 27/12/2021];23(1):1561-2937. Disponible en: http://revcardiologia.sld.cu/index.php/revcardiologia/article/view/67898.
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017. Endocrine Reviews. 2018;39(1):1-20. DOI: https://doi.org/10.1210/er.2017-0016499.
Silvestrim RL, Bos A, Roos ML, Frantz N. The Effects of Overweight and Obesity on Assisted Reproduction Technology Outcomes. JBRA Assisted Reproduction. 2019;23(3):281-6. DOI: https://doi.org/10.5935/1518-0557.20190005100.