2022, Número 2
Siguiente >>
Rev Cuba Endoc 2022; 33 (2)
Avances en la genética del síndrome de ovario poliquístico
Ovies CG, Monteagudo PG, Gómez AM
Idioma: Español
Referencias bibliográficas: 40
Paginas:
Archivo PDF: 283.42 Kb.
RESUMEN
Introducción: Los primeros estudios realizados en familiares de mujeres con síndrome de ovario poliquístico demostraron un patrón de agregación familiar y por tanto, la posibilidad de un componente genético en su etiopatogenia. Desde entonces, mucho se ha investigado al respecto.
Objetivo: Realizar una actualización en las evidencias según la literatura de las bases genéticas del síndrome de ovario poliquístico.
Métodos: Se realizó una revisión bibliográfica de los últimos 10 años sobre aspectos de genética en el síndrome de ovario poliquístico en las bases Pubmed, Google Académico, EMBASE y MEDLINE.
Conclusiones: Se demostró que en este periodo se ha avanzado en el esclarecimiento y participación de múltiples genes y loci en la patogenia del síndrome. Existe una asociación importante en diferentes poblaciones y etnias del gen DENND1A y TADHA, los cuales se localizan en los cromosomas 9 y 2, respectivamente. Además, se han realizado estudios de asociación del genoma completo (GWAS) que han identificado otros genes en cromosomas como 9q22.32, 11q22.1, 12q13.2, 19p13.3, 16 q12.1, 20q13.2, 12q14.3 (C9orf3, YAP1, RAB5B, INSR, TOX3, SUMO1P1 y HMGA2). Esta revisión permite una actualización del tema y ampliar el conocimiento sobre aspectos relacionados con el origen genético del SOP, así como concluir que el SOP tiene un origen poligénico y es de las denominadas enfermedades complejas.
REFERENCIAS (EN ESTE ARTÍCULO)
Cooper H, Spellacy W, Prem K, Cohen W. Hereditary factors in the Stein Leventhal syndrome. Am J Obstet Gynecol. 1968 [acceso: 05/01/2021];100(3):371-87. Disponible en: https://www.semanticscholar.org/paper//fae9534f250d70a0602d2ec63ff667fe4a17924d
Givens J. Ovarian hyperthecosis. N Engl J Med. 1971 [acceso: 05/01/2021];285:691-4. Disponible en: https://pubmed.ncbi.nlm.nih.gov/5563490/
Wilroy R, Givens J, Wiser W, Coleman S, Andersen R, Summitt R. Hyperthecosis: an inheritable form of polycystic ovarian disease. Birth Defects Orig Artic. 1975 [acce-so: 05/01/2021];11(4):81-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/1156689/
Ferriman D, Purdie A. The inheritance of polycystic ovarian disease and a possible relationship to premature balding. Clin Endocrinol. 1979 [acceso: 05/01/2021];1(3):291-300. Disponible en: https://pubmed.ncbi.nlm.nih.gov/509743/
Gharani N, Waterworth DM, Batty S. Association of the steroid synthesis gene CYP 11 α with polycytsic ovary syndrome and hyperandrogenism. Hum Mol Gen. 1997 [ac-ceso: 05/01/2021];6(3):397-402. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9147642/ 6. Waterworth D, Bennett S, Gharani N, McCarthy M, Hague S, Batty S, et al. Linkage and association of insulin gene VNTR regulatory polymorphism with polycystic ovary syndrome. Lancet. 1997 [acceso: 05/01/2021];349(9057):386–90. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9100625/
Michelmore K, Ong K, Mason S, Bennett S, Perry L, Vessey M, et al. Clinical fea-tures in women with polycystic ovaries: relationships to insulin sensitivity, insulin gene VNTR and birth weight. Clin Endocrinol (Oxf). 2001 [acceso: 05/01/2021];55:439–46. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11678825/
Hara K, Boutin P, Mori Y. Genetic variation in the gene encoding adiponectin is as-sociated with an increased risk of type 2 diabetes in the Japanese population. Diabetes. 2002 [acceso: 05/01/2021];1(2):536–40. Disponible en: https://pubmed.ncbi.nlm.nih.gov/11812766/
Unsal T, Konac E, Yesilkaya E, Yilmaz A, Bideci A, Ilke H, et al. Genetic polymor-phisms of FSHR, CYP17, CYP1A, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. J Assist Reprod Genet. 2009 [acceso: 05/01/2021];26(4):205-16. Disponible en: https://pubmed.ncbi.nlm.nih.gov/19387820/
Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat Genet. 2011 [acceso: 05/01/2021];43 (1): 55–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/21151128/
Shi Y, Zhao H, Cao Y, Yang D, Li Z. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 2012 [acceso: 05/01/2021];44(9):1020–5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22885925/
Hwang J, Lee J, Jin M, Sung A, Heon S, Jang C, et al. Genome-wide association study identifies GYS2 as a novel genetic factor for polycystic ovary syndrome through obesity-related condition. J Hum Genet. 2012 [acceso: 05/01/2021];57(10): 660–4. Dis-ponible en: https://pubmed.ncbi.nlm.nih.gov/22951595/
Lee H, Oh J, Sung Y, Chung H, Kim H, Kim G, et al. Genome-wide association study identified new susceptibility loci for polycystic ovary syndrome. Hum Reprod. 2015 [acceso: 05/01/2021];30(3):723–31. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25574032/
Hayes M. Genome-wide association of polycystic ovary syndrome implicates altera-tions in gonadotropin secretion in European ancestry populations. Nat Commun. 2015 [acceso: 05/01/2021];6:12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/26284813/
Simonis-Bik M, Nijpels G, van Haeften W. Gene variants in the novel type 2 diabe-tes loci CDC123/ CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes. 2010 [acceso: 05/01/2021]; 59(1):293-301. Disponible en: https://diabetes.diabetesjournals.org/content/59/1/293
Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):20. DOI: https://doi.org/10.1371/journal.pgen.1007813.
Kinoshita R, Homma Y, Fukuda M. Rab35- GEFs, DENND1A and folliculin differ-entially regulate podocalyxin trafficking in two and three dimensional epithelial cell cultures. J Biol Chem. 2020 [acceso: 05/01/2021];295(11):3652-63. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7076212/
Zhu Y, Zhang Y, Liu Q, Shen S, Zou X, Cao Y, et al. Association the risk of poly-cystic ovary syndrome in Chinese Han women. BMC Medical Genetics 2020 [acceso: 05/01/2021];21(4):3-13. Disponible en: https://bmcmedgenet.biomedcentral.com/articles/10.1186/s12881-019-0945
Goodarzi M, Jones M, Li X, Chua A, Garcia O, Chen Y, et al. Replication of Asso-ciation of DENND1A and THADA Variants with Polycystic Ovary Syndrome in Euro-pean Cohorts. J Med Genet. 2012 [acceso: 05/01/2021];49(2):90–5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22180642/
Eriksen M, Nielsen M, Brusgaard K, Tan Q, Andersen M, Glintborg D, et al. Genet-ic Alterations within the DENND1A Gene in Patients with Polycystic Ovary Syndrome (PCOS). PLoS One. 2013 [acceso: 05/01/2021];8(9):7. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077186
Gammoh E, Arekat M, Saldhana L, Madan S, Ebrahim B, Almawi W. DENND1A gene variants in Bahraini Arab women with polycystic ovary síndrome. Gene 2015 [ac-ceso: 05/01/2021];560(1):30-3. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25626177/
Dallel M, Sarray S, Douma Z, Hachani F, Al-Ansari A, Letaifa B, et al. Differential association of DENND1A genetic variants with polycystic ovary syndrome in Tunisian but not Bahraini Arab women. Gene. 2018 [acceso: 05/01/2021];647: 79-84. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29325736/
Alizzi F, Talab H, Al-Mayah Q. DENND1A and THADA Gene Polymorphism Among Iraqi Women With Polycystic Ovary Syndrome. Int J Wom Health Reprod Sci-en. 2020 [acceso: 05/01/2021];8(3):265-71. Disponible en: https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=775965
Bao S, Cai JH, Yang S, Ren Y, Feng T, Jin T, et al. Association of DENND1A Gene Polymorphisms with Polycystic Ovary Syndrome: A Meta-Analysis. J Clin Res Pediatr Endocrinol. 2016 [acceso: 05/01/2021];8(2):135-43. Disponible en: https://europepmc.org/article/pmc/5096467
Capalbo A, Saqnella F, Apa R. The 312N variant of the luteinizing hor-mone/choriogonadotropin receptor gene (LHCGR) confers up to 2.7-fold increased risk of polycystic ovary syndrome in a Sardinian population. Clin Endocrinol. 2012 [acceso: 05/01/2021];77(11): 13–9. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22356187/ 26. Themmen AP. Focus on gonadotropin signalling. An update of the pathophysiology of human gonadotrophin subunit and receptor gene mutations and polymorphisms. Re-production.2005 [acceso: 05/01/2021];130(3):263–74. Disponible en: https://pubmed.ncbi.nlm.nih.gov/16123233/
Thathapudi S, Kodati V, Erukkambattu J, Addepally U, Qurratulain H. Association of Luteinizing Hormone Chorionic Gonadotropin Receptor Gene Polymorphism (rs2293275) with Polycystic Ovarian Syndrome. Genet Test Mol Biomarkers. 2015 [ac-ceso: 05/01/2021];19(3):128–32. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25565299/
Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: bio-chemistry, molecular biology, physiology, and pathophysiology. Endocr Rev. 1997 [acceso: 05/01/2021];18(6):739-73. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9408742/
Kim J, Min Y, Hong A, Jin S, Ho S, Yup S, et al. FSH receptor gene p. Thr307Ala and p. Asn680Ser polymorphisms are associated with the risk of polycystic ovary syn-drome. J Assist Reprod Genet. 2017 [acceso: 05/01/2021];34(8):1087-93. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5533683/
Du T, Duan Y, Li K, Zhao X, Ni R, Li Y, et al. Statistical genomic approach identi-fies association between FSHR polymorphisms and polycystic ovary morphology in women with polycystic ovary syndrome. Biomed Res Int. 2015 [acceso: 05/01/2021];2015:7. Disponible en: https://www.hindawi.com/journals/bmri/2015/483726/
Panghiyangani R, Kurniati M, Soeharso M, Andrijono A, Suryandari D, Wiweko B. FSH Receptor Gene Polymorphism in Indonesian Women with Polycystic Ovarian Syndrome (PCOS). Conf. Ser. The 1st International Seminar on Smart Molecule of Natural Resources; 2019 July 11-12; Malang, Indonesia. J Phys. 2020 [acceso: 05/01/2021]. Disponible en: https://iopscience.iop.org/article/10.1088/1742-6596/1374/1/012045
Subhi R. Molecular analysis of FSH receptor gene in Iraqi women with PCOS. Middle East Fertil Society J. 2018 [acceso: 05/01/2021];23(4): 404-8. Disponible en: https://www.researchgate.net/publication/325942487
Laven J. Follicle Stimulating Hormone Receptor (FSHR) Polymorphisms and Poly-cystic Ovary Syndrome (PCOS). Front Endocrinol. 2019 [acceso: 05/01/2021];10:1-9. Disponible en: https://www.frontiersin.org/articles/10.3389/fendo.2019.00023/full
Tessneer K, Jackson R, Griesel B, Olson A. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a poten-tial mechanism for development of insulin resistance. Endocrinol. 2014 [acceso: 05/01/2021];155(9):3315–28. Disponible en: https://pubmed.ncbi.nlm.nih.gov/24932807/
Yu J, Ding C, Guan S, Wang S. Association of single nucleotide polymorphisms in the RAB5B gene 3′UTR region with polycystic ovary syndrome in Chinese Han wom-en. Biosci Rep. 2019 [acceso: 05/01/2021];39(9):13. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31036605/
Sun T, Díaz F. Ovulatory signals alter granulosa cell behavior through YAP1 signal-ing. Reprod Biol Endocrinol. 2019 [acceso: 05/01/2021];17(1): 14. Disponible en: https://rbej.biomedcentral.com/articles/10.1186/s12958-019-0552-1
Li T, Zhao H, Zhao X, Zhang B. Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J Med Genet. 2012 [acceso: 05/01/2021];49(4):254-7. Disponible en: https://pubmed.ncbi.nlm.nih.gov/22499345/
Ji S, Liu X, Li B, Zhang L, Liu H, Zhang C, et al. The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyper-androgenism-induced oligo-ovulation in mouse. Mol Hum Reprod. 2017 [acceso: 05/01/2021];23(10):698-707. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28961951/
Feng C, Lv P, Yu T, Jin M, Shen J, Wang S, Zhou F, et al. The Association between Polymorphism of INSR and Polycystic Ovary Syndrome: A Meta-Analysis. Int J Mol Sci. 2015 [acceso: 05/01/2021];16(2):2403–25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4346843/
Cui Y, Zhao S, Zhao H, Lv Y, Wang M, Chen Z. Mutational analysis of TOX3 in Chinese Han women with polycystic ovary síndrome. Reprod Biomed. 2014. [acceso: 05/01/2021];29(6):752–5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/25311971/
Ning Z, Jiayi L, Jian R, Wanli X. Relationship between abnormal TOX3 gene meth-ylation and polycystic ovarian syndrome. Eur Rev Med Pharmacol Sci. 2017 [acceso: 05/01/2021];21(9):2034-8. Disponible en: https://pubmed.ncbi.nlm.nih.gov/28537684/
Yang Y, Jian H, Xiao L, Yang X. MicroRNA-33b-5p is overexpressed and inhibits GLUT4 by targeting HMGA2 in polycystic ovarian syndrome: An in vivo and in vitro study. Oncol Rep. 2018 [[acceso: 05/01/2021];39(6):3073-85. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29693142/