2022, Número 2
<< Anterior Siguiente >>
Revista Cubana de Anestesiología y Reanimación 2022; 21 (2)
Presión de distensión alveolar: su asociación a la mortalidad y protección pulmonar en pacientes ventilados
Cuba NAJ, Sosa RA, Nuñez VI
Idioma: Español
Referencias bibliográficas: 65
Paginas: 1-20
Archivo PDF: 431.33 Kb.
RESUMEN
Introducción:
La ventilación mecánica artificial es una medida terapéutica de soporte vital aplicada en contextos clínicos como el síndrome de distrés respiratorio agudo. Por eso es necesario establecer parámetros de seguridad. La presión de distensión alveolar es una variable de interés en la protección pulmonar. Se usa para optimizar el volumen tidal de acuerdo con el tamaño del pulmón disponible durante el intercambio gaseoso. Refleja el grado de estiramiento pulmonar en cada ciclo respiratorio.
Objetivo:
Actualizar contenidos referentes a la presión de distensión alveolar en pacientes ventilados con distrés respiratorio agudo.
Método:
Se realizó una pesquisa en Google Scholar, Pubmed/Medline, SciELO regional entre otros, bajo los términos: ventilación de protección pulmonar/variables, presión de distensión alveolar durante la ventilación/medición, relación de la presión de distensión alveolar y mortalidad en SDRA/resultados. Se seleccionaron 65 referencias que cumplieron los criterios de inclusión.
Resultados:
La evidencia actual asocia el hecho de mantener una excesiva presión de distención alveolar, a la mortalidad en pacientes ventilados con síndrome de distrés respiratorio. Permite identificar el riesgo de daño inducido por la ventilación y complicaciones pulmonares en otros escenarios clínicos. Se logra así mejoría en los objetivos y metas en la ventilación mecánica artificial.
Conclusiones:
La presión de distensión alveolar está asociada con cambios en la supervivencia y ha demostrado ser el mediador clave en los efectos de la ventilación mecánica sobre los resultados del síndrome de distrés respiratorio agudo.
REFERENCIAS (EN ESTE ARTÍCULO)
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. DOI: https://doi.org/10.1016/S0140-6736(20)30566-31.
Carter C, Osborn M, Agagah G, Aedy H, Notter J. COVID-1 9 disease: invasive ventilation. Clinics in Integrated Care. 2020;1:100004. DOI: https://doi.org/10.1016/j.intcar.2020.1000042.
WHO-China Joint Mission. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). World Health Organization. 2019 [acceso: 11/09/2021]. Disponible en: https://www.who.int/docs/default-source/coronaviruse/who-chinajoint-mission-on-covid-19-final-report.pdf3.
Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, et al. COVID-19 Spanish ICU Network. Clinical features, ventilator management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;29:1-12. DOI: http://dx.doi.org/10.1007/s00134-020-06192-24.
Xie J, Wu W, Li S, Hu Y, Hu M, Li J, et al. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: A retrospective multicenter study. Intensive Care Med. 2020;46:1863-72. DOI: http://dx.doi.org/10.1007/s00134-020-06211-25.
Dirección General de Epidemiología. Bases de Datos Históricas COVID-19. 2021 [acceso: 11/09/2021]. Disponible en: http://datosabiertos.salud.gob.mx/gobmx/salud/datos_abiertos/historicos/2021/08/datos_abiertos_covid19_20.08.2021.zip6. . Accessed August 21, 2021.
Ñamendys-Silva SA. Patients with coronavirus disease 2019 requiring invasive mechanical ventilation in Mexico in the first, second, and exponential growth phase of the third wave of the coronavirus disease 2019 pandemic. Crit Care Explor. 2021;3(10):e556. DOI: https://doi.org/10.1097/CCE.00000000000005567.
Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020;215:108427. DOI: https://doi.org/10.1016/j.clim.2020.108427
O'Gara B, Talmor D. Perioperative lung protective ventilation. BMJ. 2018;362:k3030. DOI: https://doi.org/10.1136/bmj.k30309.
Pettenuzzo T, Fan E. 2016 Year in review: mechanical ventilation. Respir Care. 2017;62(5):629-35. DOI: https://doi.org/10.4187/respcare.0554510.
Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: State of the Art. Mayo Clin Proc. 2017;92(9):1382-400. DOI: https://doi.org/10.1016/j.mayocp.2017.05.00411.
López R, Sánchez B, Lorenzo M. Manejo del síndrome de distrés respiratorio agudo (SDRA). ¿Qué hay de nuevo? Revista Electrónica Anestesia R. 2020;12(8)3. DOI: https://doi.org/10.30445/rear.v12i8.84812.
Monsalve-Naharro JA. Ventilación mecánica en pacientes con síndrome de distrés respiratorio agudo. Lo que ya sabíamos. Rev Electrónica Anestesia R. 2020 [acceso: 11/09/2021];10(3):2. Disponible en: http://revistaanestesiar.org/index.php/rear/article/view/68613.
Amado Rodríguez L, del Busto C, García Prieto E, Albaiceta GM. Mechanical ventilation in acute respiratory distress syndrome: The open lung revisited. Med Intensiva. 2017;41(9):550-58. DOI: https://doi.org/10.1016/j.medin.2016.12.01214.
Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):20-32. DOI: https://doi.org/10.1164/rccm.201903-0596SO15.
Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372(8):747-55. DOI: https://doi.org/10.1056/NEJMsa11063916.
Hepokoski M, Englert JA, Baron RM, Crotty Alexander LE, Fuster MM, Beitler JR, et al. Ventilator-induced lung injury increases expression of endothelial inflammatory mediators in the kidney. Am J Physiol Renal Physiol. 2017;312(14):654-60. DOI: https://doi.org/10.1152/ajprenal.0523.201617.
Imai Y, Parodo J, Kajikawa O, de Perrot M, Fischer S, Edwards V, et al. Injurious mechanical ventilation and endorgan epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA. 2003;289(16):2104-12. DOI: https://doi.org/10.1001/jama.289.16.210418.
Yao W, Wang T, Jiang B, Gao F, Wang L, Zheng H, et al. Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China: lessons learnt and international expert recommendations. Br J. Anaesth. 2020;125(1):e28-e37. DOI: https://doi.org/10.1016/j.bja.2020.03.02619.
Yang X, Yu X, Yu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single centered retrospective, observational study. Lancet Respir Med. 2020;8(5):475-81. DOI: https://doi.org/10.1016/S2213-2600(20)30079-520.
Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Analysis of 92 deceased patients with COVID-19, J. Med. Virol. 2020;92(11):2511-15. DOI: https://doi.org/10.1002/jmv.2589121.
Zhou C, Gao C, Xie Y, Xu M. COVID-19 with spontaneous pneumomediastinum. Lancet Infect Dis. 2020;20(4):510. DOI: https://doi.org/10.1016/S1473-3099(20)30156-022.
Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438-42. DOI: https://doi.org/10.1164/rccm.201605-1081CP23.
Marini JJ. Evolving concepts for safer ventilation. Crit Care. 2019;23(1):114. DOI: https://doi.org/10.1186/s13054-019-2406-924.
Rubenfeld GD, Shankar-Hari M. Lessons from ARDS for non-ARDS research: Remembrance of trials past. JAMA. 2018;320(18):1863-65. DOI: https://doi.org/10.1001/jama.2018.1428825.
Mc-Guiness G, Zhan C, Rosenberg N, Azour L, Wickstrom M, Mason DM, et al. High incidence of barotrauma in patients with COVID-19 infection on invasive mechanical ventilation. Radiology. 2020. DOI: https://doi.org/10.1148/radiol.202020235226.
Grieco DL, Chen L, Dres M, Brochard L. Should we use driving pressure to set tidal volume? Curr Opin Crit Care. 2017;23(1):38-44. DOI: https://doi.org/10.1097/MCC.000000000000037727.
Meier A, Sell R, Malhotra A. Driving pressure for ventilation of patients with acute respiratory distress syndrome. Anesthesiology. 2020;132:1569-76 DOI: https://doi.org/10.1097/ALN.000000000000319528.
Sreedharan JK. Driving pressure: clinical applications and implications in the intensive care units. Indian Journal of Respiratory Care. 2018;2:62-66. DOI: https://doi.org/10.4103/ijrc.ijrc_12_1829.
Bellani G, Grassi A, Sosio S, Foti G. Plateau and driving pressure in the presence of spontaneous breating. Intensive Care Med. 2019;45(1):97-98. DOI: https://doi.org/10.1007/s00134-018-5311-930.
Pérez Nieto OR, Deloya Tomás E, Lomelí J, Pozo K, Monares E, Poblano M. Presión de distensión (driving pressure): principal objetivo para la protección alveolar. Neumol Cir Torax. 2018[acceso: 11/09/2021];77(3):222-27. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0028-37462018000300222&lng=es31.
Kacmarek RM, Villar J, Sulemanji D, Montiel R, Ferrando C, Blanco J, et al. Open lung approach for the acute respiratory distress syndrome: a pilot randomized controlled trial. Crit Care Med. 2016;44(1):32-42. DOI: https://doi.org/10.1097/CCM.000000000000138332.
Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21(1):199. DOI: https://doi.org/10.1186/s13054-017-1779-x33.
Marini JJ. Should we embrace the "Open Lung" Approach? Crit Care Med. 2016;44(1):237-8. DOI: https://doi.org/10.1097/CCM.000000000000148934.
Vaporidi K, Xirouchaki N, Georgopoulos D. Should we care about driving pressure during assisted mechanical ventilation? J Intensive Crit Care. 2017;31:3:2.
Mauri T, Langer T, Zanella A, Grasselli G, Pesenti A. Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med. 2016;42(12):2101-03. DOI: https://doi.org/10.1007/s0013-016-4470-936.
Mauri T, Grasselli G, Suriano G, Eronia N, Spadaro S, Turrini C, et al. Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology. 2016;125(1):159-67. DOI: https://doi.org/10.097/ALN.000000000000110337.
Bugedo G, Retamal J, Bruhn A. Driving pressure: a marker of severity, a safety limit, or a goal for mechanical ventilation? Crit Care. 2017;21(1):199. DOI: https://doi.org/10.1186/s13054-017-1779-x38.
Yoshida T, Fujino Y, Amato MB, Kavanagh BP. Fifty years of research in ARDS. spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med. 2017;8:985-92. DOI: https://doi.org/10.1164/rccm.201604-0748CP39.
Thompson BT, Chambers RC, Liu KD. Acute respiratory distress syndrome. N Engl J Med. 2017;377(6):562-572. DOI: https://doi.org/10.1056/NEJMra160807740.
Aoyama H, Pettenuzzo T, Aoyama K, Pinto R, Englesakis M, Fan E. Association of driving pressure with mortality among ventilated patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Crit Care Med. 2018;46(2):300-06. DOI: https://doi.org/10.1097/CCM.000000000000283841.
Gong K, Chen L, Xia H, Dai H, Li X, Sun L, et al. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization. Int J Biol Macromol. 2019;130:915-21. DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.12342.
Blondonnet R, Joubert E, Godet T, Berthelin P, Pranal T, Roszyk L, et al. Driving pressure and acute respiratory distress syndrome in critically ill patients. Respirology. 2019;24(2):137-45. DOI: https://doi.org/10.1111/resp.1339443.
Tonetti T, Vasques F, Rapetti F, Maiolo G, Collino F, Romitti F, et al. Driving pressure and mechanical power: new targets for VILI prevention. Ann Transl Med. 2017;5(14):286. DOI: https://doi.org/10.21037/atm.2017.07.0844.
Cavalcanti AB, Suzumura ÉA, Laranjeira LN, Paisani DM, Damiani LP, Guimarães HP, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low peep on mortality in patients with acute respiratory distress syndrome: A randomized clinical trial. JAMA. 2017;318(14):1335-45. DOI: https://doi.org/10.1001/jama.2017.117145.
Villar J, Martín Rodríguez C, Domínguez Berrot AM, Fernández L, Ferrando C, Soler JA, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45(5):843-50. DOI: https://doi.org/10.1097/CCM.000000000000233046.
Laffy JG, Bellani G, Pham T, Fan E, Madotto F, Bajwa EK, et al. LUNG SAFE Investigators and the ESICM Trials Group: Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: The LUNG SAFE study. Intensive Care Med. 2016;42(12):1865-76. DOI: https://doi.org/10.1007/s00134-016-4571-547.
Gruta E, Awsare B, Hirose H, Caarocchi N, Baram M. Don't drive blind: driving pressure to optimize ventilator management in ECMO. Lung. 2020;198(5):785-92. DOI: https://doiorg/10.1007/s00408-020-00381-y48.
Chiu LC, Hu HC, Hung CY, Chang CH, Tsai FC, Yang CT, et al. Dynamic driving pressure associated mortality in acute respiratory distress syndrome with extracorporeal membrane oxygenation. Ann Intensive Care. 2017;7(1):12. DOI: https://doi.org/10.1186/s13613-017-0236-y49.
Stevens RD, Piran P. Lung-protective ventilation and adjunctive strategies to manage respiratory failure: Are they safe in the neurological patient? Current Opinion in Critical Care. 2021;27:115-19. DOI: https://doi.org/10.1097/MCC.000000000000080950.
Tejerina E, Pelosi P, Muriel A, Penuelas O, Sutherasan Y, Frutos-Vivar F, et al. Association between ventilator settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341-45. DOI: https://doi.org/10.1016/j.crc.2016.11.01051.
Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernández Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4(4):272-80. DOI: https://doi.org/10.1016/S2213-2600(16)00057-652.
Park M, Ahn HJ, Kim JA, Yang M, Heo BY, Choi JW, et al. Driving pressure during thoracic surgery: A randomized clinical trial. Anesthesiology. 2019;130(3):385-93. DOI: https://doi.org/10.1097/ALN.000000000000260053.
Marín Martínez AD. Impacto de diferentes estrategias de ventilación mecánica sobre el driving pressure y el poder mecánico en pacientes sometidos a cirugía abdominal mayor bajo anestesia general. [Tesis de post grado] Universidad Autónoma de Puebla. Facultad de Medicina, Puebla. 2019. Disponible en: https://repositorioinstitucional.buap.mx/bitstream/handle/20.500.12371/10180/20200728130033-1602-T.pdf?sequence=154.
Wu HP, Hu HC, Chu CM, Kao KC. The association between higher driving pressure and higher mortality in patients with pneumonia without acute respiratory distress syndrome. J Formos Med Assoc. 2021;120(1):204-11. DOI: https://doi.org/10.1016/j.jfma.2020.0402755.
Schmidt MFS, Amaral ACKB, Fan E, Rubenfeld GD. Driving pressure and hospital mortality in patients without ARDS: A cohort study. Chest. 2018;153(1):46-54. DOI: https://doi.org/10.1016/j.chest.2017.10.00456.
Mazzinari G, Díaz Cambronero O, Alonso lñigo JM, García Gregorio N, Ayas Montero B, Ibañez JL. Intraabdominal pressure targeted positive end-expiratory pressure during laparoscopic surgery: an open-label, nonrandomized, crossover, clinical trial. Anesthesiology. 2020;132(4):667-77. DOI: https://doi.org/10.1097/ALN.00000000000031657.
De Jong A, Wrigge H, Hedenstierna G, Gattinoni L, Chiumello D, Frat JP, et al. How to ventilate obese patients in the ICU. Intensive Care Med. 2020;46(12):2423-35. DOI: https://doi.org/10.1007/s00134-020-06286-x58.
De Jong A, Cossic J, Verzilli D, Monet C, Carr J, Conseli M, et al. Impact of the driving pressure on mortality in obese and non-obese ARDS patients: a retrospective study of 362 cases. Intensive Care Med. 2018;44(7):1106-14. DOI: https://doi.org/10.1007/s00134-018-5241-659.
Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45(6):757-69. DOI: https://doi.org/10.1007/s00134-019-05594-160.
Apolinário D. Epidemiology of mechanical ventilation and acute respiratory failure in cancer patients. En: Esquinas AM, Soubani AO, Pravinkumar SE editores. Mechanical ventilation in critically ill cancer patients. Rationale and practical approach. Springer International Publishing AG. 2018. p: 3-7. DOI: https://doi.org/10.1007/978-3-319-49256-8_161.
Martos Benítez FD, Gutiérrez Noyola A, Badal M, Dietrich NA. Risk factors and outcomes of severe acute respiratory failure requiring invasive mechanical ventilation in cancer patients: A retrospective cohort study. Med Intensiva. 2018;42(6):354-62. DOI: https://doi.org/10.1016/j.medin.2017.08.00462.
Martos Benítez FD, Soto García A, Gutiérrez Noyola A. Clinical characteristics and outcomes of cancer patients requiring intensive care unit admission: a prospective study. J Cancer Res Clin Oncol. 2018;144(4):717-23. DOI: https://doi.org/10.1007/s00432-018-2581-063.
Sears SP, Carr G, Bime C. Acute and chronic respiratory failure in cancer patients. En: Nates JL, Price KJ editores. Oncologic Critical Care. Springer Nature Switzerland AG 2020. p: 445-75. DOI: https://doi.org/10.1007/978-3-319-74588-6_4364.
Schmidt M, Schellongowski P, Patroniti N, Taccone FS, Reis Miranda D, Reuter J, et al. IDEA Study Group collaborators are as follows. Six-Month outcome of immunocompromised patients with severe acute respiratory distress syndrome rescued by extracorporeal membrane oxygenation. An international multicenter retrospective study. Am J Respir Crit Care Med. 2018;197(10):1297-1307. DOI: https://doi.org/10.1164/rccm.201708-1761OC65.