2024, Número 3
<< Anterior Siguiente >>
Cir Card Mex 2024; 9 (3)
Un sistema anticalcificante. Una opción contra la calcificación de las bioprótesis
Juárez-Hernández A, Masso-Rojas FA
Idioma: Ingles.
Referencias bibliográficas: 49
Paginas: 79-86
Archivo PDF: 335.58 Kb.
RESUMEN
Las bioprótesis cardiacas son en la actualidad la mejor opción para sustituir una válvula cardiaca enferma. Desde hace varios años se sabe que el principal problema de las bioprótesis es la calcificación (mineralización). Por tanto, en nuestra institución, donde se tiene ya experiencia de 35 años en la elaboración de bioprótesis, se investigó y desarrolló un sistema para tratar de proteger nuestras bioprótesis de este problema. Nuestras prótesis originalmente se hicieron con duramadre y posteriormente con pericardio bovino preservadas con glutaraldehído, solución que prepara bien al tejido biológico, pero que tiene el inconveniente de atraer calcio. El sistema propuesto y probado fue el de agregar un aminoácido sencillo, glicina, al tratamiento general. Este tratamiento impide la adhesión de calcio al tejido biológico, permitiéndole un tiempo de vida funcional más prolongado que con el tratamiento convencional. A partir de estudios in vitro e in vivo muy satisfactorios, se pasó a la etapa clínica, en donde hasta el momento se han implantado 1,362 prótesis en todas las posiciones con excelentes resultados a 10 años.
REFERENCIAS (EN ESTE ARTÍCULO)
Ross D. The versatile homograft and autograft valve. Ann Thorac Surg. 1989;48(3 Suppl):S69-70. doi: 10.1016/0003-4975(89)90644-9.
Ross DN, Somerville J. Correction of pulmonary atresia with a homograft aortic valve. Lancet. 1966;2(7479):1446-1447. doi: 10.1016/s0140-6736(66)90600-3.
Li CP, Chen SF, Lo CW, Lu PC. Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO J. 2011;57(3):188-196. doi: 10.1097/MAT.0b013e318213f9c2.
Graf T, Reul H, Detlefs C, Wilmes R, Rau G. Causes and formation of cavitation in mechanical heart valves. J Heart Valve Dis. 1994;3 Suppl 1:S49-64.
Liu JS, Lu PC, Chu SH. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng. 2000;122(2):118-124.
Hanle DD, Harrison EC, Yoganathan AP, Corcoran WH. Turbulence downstream from the Ionescu Shiley bioprosthesis in steady and pulsatile flow. Med Biol Eng Comput 1987;25:645-649. doi: 10.1115/1.429643. 10.1007/bf02447332.
Nygaard H, Giersiepen M, Hasenkam JM, et al. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. J Biomech. 1992;25(4):429-440. doi: 10.1016/0021-9290(92)90262-y.
Edmunds LH Jr. Thrombotic and bleeding complications of prosthetic heart valves. Ann Thorac Surg. 1987;44(4):430-445. doi: 10.1016/s0003-4975(10)63816-7.
Yoganathan AP, Corcoran WH, Harrison EC, Carl JR. The Björk-Shiley aortic prosthesis: flow characteristics, thrombus formation and tissue overgrowth. Circulation. 1978;58(1):70-76. doi: 10.1161/01.cir.58.1.70.
Lim WL, Chew YT, Chew TC, Low HT. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J Biomech. 2001;34(11):1417-1427. doi: 10.1016/s0021-9290(01)00132-4.
Ellis JT, Wick TM, Yoganathan AP. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J Heart Valve Dis. 1998;7(4):376-386.
Levine MN, Raskob G, Hirsh J. Hemorrhagic complications of long-term anticoagulant therapy. Chest. 1989;95(2 Suppl):26S-36S. doi: 10.1378/chest.95.2_supplement.26s.
Lee RJ, Bartzokis T, Yeoh TK, Grogin HR, Choi D, Schnittger I. Enhanced detection of intracardiac sources of cerebral emboli by transesophageal echocardiography. Stroke. 1991;22(6):734-739. doi: 10.1161/01.str.22.6.734.
Orsinelli DA, Pearson AC. Detection of prosthetic valve strands by transesophageal echocardiography: clinical significance in patients with suspected cardiac source of embolism. J Am Coll Cardiol. 1995;26(7):1713-1718. doi: 10.1016/0735-1097(95)00375-4.
Isada LR, Torelli JN, Stewart WJ, Klein AL. Detection of fibrous strands on prosthetic mitral valves with transesophageal echocardiography: another potential embolic source. J Am Soc Echocardiogr. 1994;7(6):641-645. doi: 10.1016/s0894-7317(14)80087-4.
Hutchinson K, Hafeez F, Woods TD, et al. Recurrent ischemic strokes in a patient with Medtronic-Hall prosthetic aortic valve and valve strands. J Am Soc Echocardiogr. 1998;11(7):755-757. doi: 10.1053/je.1998.v11.a91045.
Carey RF, Porter JM, Richard G, et al. An interlaboratory comparison of the FDA protocol for the evaluation of cavitation potential of mechanical heart valves. J Heart Valve Dis. 1995;4(5):532-539.
Hwang NH. Cavitation of mechanical heart valves. J Heart Valv Dis. 1995;4:531. doi: 10.1177/03913988040270100.
Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R. Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis. 1994;3 Suppl 1:S2-7.
He Z, Xi B, Zhu K, Hwang NH. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis. 2001;10(5):666-674.
Naito Y, Hachida M, Shimabukuro T, Nonoyama M, Endo M, Koyanagi H. St. Jude Medical prosthetic aortic valve malfunction due to pannus formation. Jpn J Thorac Cardiovasc Surg. 2000;48(11):739-741. doi: 10.1007/BF03218244.
Hurwitz SE, Waxman D, Hecht S. Acute failure of a St. Jude's prosthetic aortic valve: large pannus formation masked by a small thrombus. J Am Soc Echocardiogr. 2009;22(9):1086.e1-3. doi: 10.1016/j.echo.2009.04.001.
Vitale N, Renzulli A, Agozzino L, et al. Obstruction of mechanical mitral prostheses: analysis of pathologic findings. Ann Thorac Surg. 1997;63(4):1101-1106. doi: 10.1016/s0003-4975(96)01391-4.
Sakamoto Y, Hashimoto K, Okuyama H, Ishii S, Shingo T, Kagawa H. Prevalence of pannus formation after aortic valve replacement: clinical aspects and surgical management. J Artif Organs. 2006;9(3):199-202. doi: 10.1007/s10047-006-0334-3.
Deviri E, Sareli P, Wisenbaugh T, Cronje SL. Obstruction of mechanical heart valve prostheses: clinical aspects and surgical management. J Am Coll Cardiol. 1991;17(3):646-650. doi: 10.1016/s0735-1097(10)80178-0.
Dunning J, Gao H, Chambers J, et al. Aortic valve surgery: marked increases in volume and significant decreases in mechanical valve use--an analysis of 41,227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database. J Thorac Cardiovasc Surg. 2011;142(4):776-782.e3. doi: 10.1016/j.jtcvs.2011.04.048.
Bonow RO, Carabello BA, Chatterjee K, et al. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008;118(15):e523-661. doi: 10.1161/CIRCULATIONAHA.108.190748.
Starr, A. The artificial heart valve. Nat Med. 2007;13:1160-1164. doi.org/10.1038/nm1644.
Goffin YA, Bartik MA, Hilbert SL. Porcine aortic vs. bovine pericardial valves: a morphologic study of the Xenomedica and Mitroflow bioprostheses. Z Kardiol. 1986;75(Suppl 2):213-222.
Carpentier A. From valvular xenograft to valvular bioprosthesis (1965-1977). Med Instrum. 1977;11(2):98-101.
Ross DN. Homograft replacement of the aortic valve. Lancet. 1962;2:487-490.
Angell WW, Iben AB, Shumway NE. Fresh aortic homografts for multiple valve replacement. Arch Surg. 1968;97:826-830.
Puig LB, Verginelli G, Kawabe L, Zerbini EJ. Homologous dura mater cardiac valve. Method of preparing the valve. Rev Hosp Clin Fac Med Sao Paulo. 1974;29(2):85-89. [Article in Portuguese].
Puig LB, Verginelli G, Iryia K, et al. Homologous dura mater cardiac valves. Study of 533 surgical cases. J Thorac Cardiovasc Surg. 1975;69(5):722-728.
Petropoulos PC. Fate of dura mater homograft covering defects of right ventricle. Surgery 1962; 52: 883-889.
Ionescu MI, Ross DN. Heart-valve replacement with autologous fascia lata. Lancet. 1969;2(7616):335-338. doi: 10.1016/s0140-6736(69)92696-8.
Ionescu MI, Ross DN, Deac R, et al. Autologous fascia lata for heart valve replacement. Thorax. 1970;25(1):46-56. doi: 10.1136/thx.25.1.46.
Schwartz H, Senning A. Autogreffe des valves aortiques. Ann Chir Thorac Cardiovasc. 1966;5(2):271-274.
Senning A. Fascia lata replacement of aortic valves. J Thorac Cardiovasc Surg. 1967;54(4):465-470.
Puig LB, Verginelli G, Belloti G, et al. O uso da duramater homóloga en cirurgia cardiaca. Arq Bras Cardiol. 1973;26:295-302.
Lex A, Raia A. Use of homologous dura mater, preserved in glycerin, in the treatment of incisional hernia. Rev Paul Med. 1971;77:123-128.
Pigossi N, Raia A, Lex A, et al. Experimental and clinical study on the use as a transplant of homogenous dura mater preserved in glycerin at room temperature. AMB Rev Assoc Med Bras. 1971;17(8):263-277. [Article in Portuguese].
Carpentier A, Lemaigre G, Robert L, Carpentier S, Dubost C. Biological factors affecting long-term results of valvular heterografts. J Thorac Cardiovasc Surg. 1969;58(4):467-483.
Carpentier A. The concept of bioprosthesis. Thoraxchir Vask Chir. 1971;19(5):379-383. doi: 10.1055/s-0028-1099149.
Jorge-Herrero E, Fernández P, de la Torre N, et al. Inhibition of the calcification of porcine valve tissue by selective lipid removal. Biomaterials. 1994;15(10):815-820. doi: 10.1016/0142-9612(94)90036-1.
Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials. 1997;18(2):95-105. doi: 10.1016/s0142-9612(96)00106-8.
Sacks MS, Chuong CJ, More R. Collagen fiber architecture of bovine pericardium. ASAIO J. 1994;40(3):M632-637. doi: 10.1097/00002480-199407000-00075.
Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17(5):471-484. doi: 10.1016/0142-9612(96)82721-9.
Golomb G, Schoen FJ, Smith MS, Linden J, Dixon M, Levy RJ. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol. 1987;127(1):122-130.