2024, Número 3
<< Anterior Siguiente >>
Acta Ortop Mex 2024; 38 (3)
Artrofibrosis de rodilla en cirugía ortopédica pediátrica
Faust T, Castañeda P
Idioma: Ingles.
Referencias bibliográficas: 83
Paginas: 179-187
Archivo PDF: 209.58 Kb.
RESUMEN
La artrofibrosis es una complicación difícil asociada con lesiones de rodilla tanto en niños como en adultos. Si bien se sabe mucho sobre el manejo de la artrofibrosis en adultos, es necesario comprender sus aspectos únicos y estrategias de manejo en la población pediátrica. Este documento proporciona una visión general de la artrofibrosis en la cirugía ortopédica pediátrica, centrándose en sus causas, implicaciones, clasificaciones y manejo. Este documento es una revisión completa de la literatura y la investigación existente sobre artrofibrosis en pacientes pediátricos. La artrofibrosis se caracteriza por una producción excesiva de colágeno y adherencias, lo que conduce a un movimiento articular restringido y dolor. Se asocia con una inmunorrespuesta y fibrosis dentro y alrededor de la articulación. La artrofibrosis puede ser el resultado de varias lesiones de rodilla en pacientes pediátricos, incluyendo fracturas de columna tibial, lesiones de LCA y LCP, y procedimientos extraarticulares. Los factores técnicos en el momento de la cirugía desempeñan un papel en el desarrollo de la pérdida de movimiento y deben abordarse para minimizar las complicaciones. Se recomienda prevenir la artrofibrosis a través de la fisioterapia temprana. La gestión no operativa, incluyendo el empalme dinámico y la fundición en serie, ha mostrado algunos beneficios. Los nuevos enfoques farmacológicos a la lisis de adherencias han demostrado ser prometedores. Las intervenciones quirúrgicas, consistentes en lisis artroscópica de adherencias (LOA) y manipulación bajo anestesia (MUA), pueden mejorar significativamente el movimiento y los resultados funcionales. La artrofibrosis plantea desafíos únicos en los pacientes pediátricos, exigiendo un enfoque matizado que incluye prevención, intervención temprana con medios no operatorios y mejoras en las técnicas quirúrgicas. Las intervenciones farmacológicas modernas ofrecen una promesa para el futuro. Las intervenciones e investigaciones personalizadas centradas en pacientes pediátricos son fundamentales para obtener resultados óptimos.
REFERENCIAS (EN ESTE ARTÍCULO)
Freeman MA, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech. 2005; 38(2): 197-208. doi: 10.1016/j.jbiomech.2004.02.006.
Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M. Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med. 1991; 19(4): 332-6. doi: 10.1177/036354659101900402.
Magit D, Wolff A, Sutton K, Medvecky MJ. Arthrofibrosis of the knee. J Am Acad Orthop Surg. 2007; 15(11): 682-94. doi: 10.5435/00124635-200711000-00007.
Perry J, Antonelli D, Ford W. Analysis of knee-joint forces during flexed-knee stance. J Bone Joint Surg Am. 1975; 57(7): 961-7.
Gogia PP, Braatz JH, Rose SJ, Norton BJ. Reliability and validity of goniometric measurements at the knee. Phys Ther. 1987; 67(2): 192-5. doi: 10.1093/ptj/67.2.192.
Schlegel TF, Boublik M, Hawkins RJ, Steadman JR. Reliability of heel-height measurement for documenting knee extension deficits. Am J Sports Med. 2002; 30(4): 479-82. doi: 10.1177/03635465020300040501.
Shelbourne KD, Patel DV, Martini DJ. Classification and management of arthrofibrosis of the knee after anterior cruciate ligament reconstruction. Am J Sports Med. 1996; 24(6): 857-62. doi: 10.1177/036354659602400625.
Strum GM, Friedman MJ, Fox JM, Ferkel RD, Dorey FH, Del Pizzo W, et al. Acute anterior cruciate ligament reconstruction. Analysis of complications. Clin Orthop Relat Res. 1990; (253): 184-9.
Harner CD, Irrgang JJ, Paul J, Dearwater S, Fu FH. Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med. 1992; 20(5): 499-506. doi: 10.1177/036354659202000503.
Dodds JA, Keene JS, Graf BK, Lange RH. Results of knee manipulations after anterior cruciate ligament reconstructions. Am J Sports Med. 1991; 19(3): 283-7. doi: 10.1177/036354659101900313.
Shelbourne KD, Nitz P. Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med. 1990; 18(3): 292-9. doi: 10.1177/036354659001800313.
Fisher SE, Shelbourne KD. Arthroscopic treatment of symptomatic extension block complicating anterior cruciate ligament reconstruction. Am J Sports Med. 1993; 21(4): 558-64. doi: 10.1177/036354659302100413.
Noyes FR, Mangine RE, Barber SD. The early treatment of motion complications after reconstruction of the anterior cruciate ligament. Clin Orthop Relat Res. 1992; (277): 217-28.
Watson RS, Gouze E, Levings PP, Bush ML, Kay JD, Jorgensen MS, et al. Gene delivery of TGF-β1 induces arthrofibrosis and chondrometaplasia of synovium in vivo. Lab Invest. 2010; 90(11): 1615-27. doi: 10.1038/labinvest.2010.145.
Unterhauser FN, Bosch U, Zeichen J, Weiler A. Alpha-smooth muscle actin containing contractile fibroblastic cells in human knee arthrofibrosis tissue. Winner of the AGA-DonJoy Award 2003. Arch Orthop Trauma Surg. 2004; 124(9): 585-91. doi: 10.1007/s00402-004-0742-x.
Younai S, Venters G, Vu S, Nichter L, Nimni ME, Tuan TL. Role of growth factors in scar contraction: an in vitro analysis. Ann Plast Surg. 1996; 36(5): 495-501. doi: 10.1097/00000637-199605000-00011.
Rockey DC, Bell PD, Hill JA. Fibrosis--A common pathway to organ injury and failure. N Engl J Med. 2015; 373(1): 96. doi: 10.1056/NEJMc1504848.
Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation. Biochim Biophys Acta. 2013; 1832(7): 876-83. doi: 10.1016/j.bbadis.2012.11.002.
Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res. 2019; 7: 9. doi: 10.1038/s41413-019-0047-x.
Lee DR, Therrien E, Song BM, Camp CL, Krych AJ, Stuart MJ, et al. Arthrofibrosis nightmares: prevention and management strategies. Sports Med Arthrosc Rev. 2022; 30(1): 29-41. doi: 10.1097/JSA.0000000000000324.
Dagneaux L, Owen AR, Bettencourt JW, Barlow JD, Amadio PC, Kocher JP, et al. Human fibrosis: is there evidence for a genetic predisposition in musculoskeletal tissues? J Arthroplasty. 2020; 35(11): 3343-52. doi: 10.1016/j.arth.2020.05.070.
Vander Have KL, Ganley TJ, Kocher MS, Price CT, Herrera-Soto JA. Arthrofibrosis after surgical fixation of tibial eminence fractures in children and adolescents. Am J Sports Med. 2010; 38(2): 298-301. doi: 10.1177/0363546509348001.
McLennan JG. The role of arthroscopic surgery in the treatment of fractures of the intercondylar eminence of the tibia. J Bone Joint Surg Br. 1982; 64(4): 477-80. doi: 10.1302/0301-620X.64B4.6896515.
Mah JY, Adili A, Otsuka NY, Ogilvie R. Follow-up study of arthroscopic reduction and fixation of type III tibial-eminence fractures. J Pediatr Orthop. 1998; 18(4): 475-7.
Bram JT, Aoyama JT, Mistovich RJ, Ellis HB Jr, Schmale GA, Yen YM, et al. Four risk factors for arthrofibrosis in tibial spine fractures: a national 10-site multicenter study. Am J Sports Med. 2020; 48(12): 2986-93. doi: 10.1177/0363546520951192.
Edmonds EW, Fornari ED, Dashe J, Roocroft JH, King MM, Pennock AT. Results of displaced pediatric tibial spine fractures: a comparison between open, arthroscopic, and closed management. J Pediatr Orthop. 2015; 35(7): 651-6. doi: 10.1097/BPO.0000000000000356.
Patel NM, Park MJ, Sampson NR, Ganley TJ. Tibial eminence fractures in children: earlier posttreatment mobilization results in improved outcomes. J Pediatr Orthop. 2012; 32(2): 139-44. doi: 10.1097/BPO.0b013e318242310a.
Adams AJ, O'Hara NN, Abzug JM, Aoyama JT; Tibial Spine Research Group; Ganley TJ, et al. Pediatric type II tibial spine fractures: addressing the treatment controversy with a mixed-effects model. Orthop J Sports Med. 2019; 7(8): 2325967119866162. doi: 10.1177/2325967119866162.
Aoyama JT, LaValva SM, Bram JT, Reese T, Ganley TJ. Comparing rates of tibial spine fractures to ACL tears: a 7-year trend. Orthop J Sports Med. 2020; 8(4 suppl 3): 2325967120S00173. doi: 10.1177/2325967120S00173.
Lafrance RM, Giordano B, Goldblatt J, Voloshin I, Maloney M. Pediatric tibial eminence fractures: evaluation and management. J Am Acad Orthop Surg. 2010; 18(7): 395-405. doi: 10.5435/00124635-201007000-00002.
Shin YW, Uppstrom TJ, Haskel JD, Green DW. The tibial eminence fracture in skeletally immature patients. Curr Opin Pediatr. 2015; 27(1): 50-7. doi: 10.1097/MOP.0000000000000176.
Smith HE, Cruz AI Jr, Mistovich RJ, Leska TM, Ganley TJ, Aoyama JT, et al. What are the causes and consequences of delayed surgery for pediatric tibial spine fractures? A multicenter study. Orthop J Sports Med. 2022; 10(3): 23259671221078333. doi: 10.1177/23259671221078333.
Anderson CN, Anderson AF. Tibial eminence fractures. Clin Sports Med. 2011; 30(4): 727-42. doi: 10.1016/j.csm.2011.06.007.
Yaru NC, Daniel DM, Penner D. The effect of tibial attachment site on graft impingement in an anterior cruciate ligament reconstruction. Am J Sports Med. 1992; 20(2): 217-20. doi: 10.1177/036354659202000222.
Romano VM, Graf BK, Keene JS, Lange RH. Anterior cruciate ligament reconstruction. The effect of tibial tunnel placement on range of motion. Am J Sports Med. 1993; 21(3): 415-8. doi: 10.1177/036354659302100315.
Shelbourne KD, Patel DV. Treatment of limited motion after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 1999; 7(2): 85-92. doi: 10.1007/s001670050127.
Markolf KL, Hame S, Hunter DM, Oakes DA, Zoric B, Gause P, et al. Effects of femoral tunnel placement on knee laxity and forces in an anterior cruciate ligament graft. J Orthop Res. 2002; 20(5): 1016-24. doi: 10.1016/S0736-0266(02)00035-9.
Howell SM, Taylor MA. Failure of reconstruction of the anterior cruciate ligament due to impingement by the intercondylar roof. J Bone Joint Surg Am. 1993; 75(7): 1044-55. doi: 10.2106/00004623-199307000-00011.
Simmons R, Howell SM, Hull ML. Effect of the angle of the femoral and tibial tunnels in the coronal plane and incremental excision of the posterior cruciate ligament on tension of an anterior cruciate ligament graft: an in vitro study. J Bone Joint Surg Am. 2003; 85(6): 1018-29. doi: 10.2106/00004623-200306000-00006.
Markolf KL, Burchfield DM, Shapiro MM, Davis BR, Finerman GA, Slauterbeck JL. Biomechanical consequences of replacement of the anterior cruciate ligament with a patellar ligament allograft. Part I: insertion of the graft and anterior-posterior testing. J Bone Joint Surg Am. 1996; 78(11): 1720-7. doi: 10.2106/00004623-199611000-00013.
Pinczewski LA, Deehan DJ, Salmon LJ, Russell VJ, Clingeleffer A. A five-year comparison of patellar tendon versus four-strand hamstring tendon autograft for arthroscopic reconstruction of the anterior cruciate ligament. Am J Sports Med. 2002; 30(4): 523-36. doi: 10.1177/03635465020300041201.
Sajovic M, Vengust V, Komadina R, Tavcar R, Skaza K. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med. 2006; 34(12): 1933-40. doi: 10.1177/0363546506290726.
Mayr HO, Weig TG, Plitz W. Arthrofibrosis following ACL reconstruction--reasons and outcome. Arch Orthop Trauma Surg. 2004; 124(8): 518-22. doi: 10.1007/s00402-004-0718-x.
Cosgarea AJ, Sebastianelli WJ, DeHaven KE. Prevention of arthrofibrosis after anterior cruciate ligament reconstruction using the central third patellar tendon autograft. Am J Sports Med. 1995; 23(1): 87-92. doi: 10.1177/036354659502300115.
Schachter AK, Rokito AS. ACL injuries in the skeletally immature patient. Orthopedics. 2007; 30(5): 365-70; quiz 371-2. doi: 10.3928/01477447-20070501-01.
McIntosh AL, Dahm DL, Stuart MJ. Anterior cruciate ligament reconstruction in the skeletally immature patient. Arthroscopy. 2006; 22(12): 1325-30. doi: 10.1016/j.arthro.2006.07.014.
Pavlovich R, Goldberg SH, Bach BR. Adolescent ACL injury: treatment considerations. J Knee Surg. 2004; 17(2): 79-93. doi: 10.1055/s-0030-1248203.
Nwachukwu BU, McFeely ED, Nasreddine A, Udall JH, Finlayson C, Shearer DW, et al. Arthrofibrosis after anterior cruciate ligament reconstruction in children and adolescents. J Pediatr Orthop. 2011; 31(8): 811-7. doi: 10.1097/BPO.0b013e31822e0291.
Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. Surgical technique. J Bone Joint Surg Am. 2006; 88 Suppl 1 Pt 2: 283-93. doi: 10.2106/JBJS.F.00441.
Fanelli GC. Posterior cruciate ligament injuries in trauma patients. Arthroscopy. 1993; 9(3): 291-4. doi: 10.1016/s0749-8063(05)80424-4.
Fanelli GC, Edson CJ. Posterior cruciate ligament injuries in trauma patients: Part II. Arthroscopy. 1995; 11(5): 526-9. doi: 10.1016/0749-8063(95)90127-2.
Al-Ahaideb A. Posterior cruciate ligament avulsion fracture in children: a case report with long-term follow-up and comprehensive literature review. Eur J Orthop Surg Traumatol. 2013; 23 Suppl 2: S257-260. doi: 10.1007/s00590-012-1146-1
Pandya NK, Janik L, Chan G, Wells L. Case reports: pediatric PCL insufficiency from tibial insertion osteochondral avulsions. Clin Orthop Relat Res. 2008; 466(11): 2878-83. doi: 10.1007/s11999-008-0373-6.
Sanders TL, Pareek A, Barrett IJ, Kremers HM, Bryan AJ, Stuart MJ, et al. Incidence and long-term follow-up of isolated posterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc. 2017; 25(10): 3017-23. doi: 10.1007/s00167-016-4052-y.
Shelbourne KD, Clark M, Gray T. Minimum 10-year follow-up of patients after an acute, isolated posterior cruciate ligament injury treated nonoperatively. Am J Sports Med. 2013; 41(7): 1526-33. doi: 10.1177/0363546513486771.
Shelbourne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior cruciate ligament injuries. Arthroscopy. 2005; 21(4): 457-61. doi: 10.1016/j.arthro.2004.11.013.
Wegmann H, Janout S, Novak M, et al. Surgical treatment of posterior cruciate ligament lesions does not cause growth disturbances in pediatric patients. Knee Surg Sports Traumatol Arthrosc. 2019; 27(8): 2704-9. doi: 10.1007/s00167-018-5308-5.
Sorensen OG, Fauno P, Christiansen SE, Lind M. Posterior cruciate ligament reconstruction in skeletal immature children. Knee Surg Sports Traumatol Arthrosc. 2017; 25(12): 3901-5. doi: 10.1007/s00167-016-4416-3.
Kocher MS, Shore B, Nasreddine AY, Heyworth BE. Treatment of posterior cruciate ligament injuries in pediatric and adolescent patients. J Pediatr Orthop. 2012; 32(6): 553-60. doi: 10.1097/BPO.0b013e318263a154.
Salmons HI, Payne AN, Taunton MJ, Owen AR, Fruth KM, Berry DJ, et l. Nonsteroidal anti-inflammatory drugs and oral corticosteroids mitigated the risk of arthrofibrosis after total knee arthroplasty. J Arthroplasty. 2023; 38(6S): S350-4. doi: 10.1016/j.arth.2023.03.076.
Trousdale WH, Salib CG, Reina N, Lewallen EA, Viste A, Berry DJ, et al. A drug eluting scaffold for the treatment of arthrofibrosis. Tissue Eng Part C Methods. 2018; 24(9): 514-23. doi: 10.1089/ten.TEC.2018.0136.
Insall JN, Hood RW, Flawn LB, Sullivan DJ. The total condylar knee prosthesis in gonarthrosis. A five to nine-year follow-up of the first one hundred consecutive replacements. J Bone Joint Surg Am. 1983; 65(5): 619-28.
Rand JA, Ilstrup DM. Survivorship analysis of total knee arthroplasty. Cumulative rates of survival of 9200 total knee arthroplasties. J Bone Joint Surg Am. 1991; 73(3): 397-409.
Schiavone Panni A, Cerciello S, Vasso M, Tartarone M. Stiffness in total knee arthroplasty. J Orthop Traumatol. 2009; 10(3): 111-8. doi: 10.1007/s10195-009-0054-6.
Kim YM, Joo YB. Prognostic factors of arthroscopic adhesiolysis for arthrofibrosis of the knee. Knee Surg Relat Res. 2013; 25(4): 202-6. doi: 10.5792/ksrr.2013.25.4.202.
Ibrahim IO, Nazarian A, Rodriguez EK. Clinical management of arthrofibrosis: state of the art and therapeutic outlook. JBJS Rev. 2020; 8(7): e1900223. doi: 10.2106/JBJS.RVW.19.00223.
McAlister I, Sems SA. Arthrofibrosis after periarticular fracture fixation. Orthop Clin North Am. 2016; 47(2): 345-55. doi: 10.1016/j.ocl.2015.09.003.
Moore TJ, Harwin C, Green SA, Garland DE, Chandler RW. The results of quadricepsplasty on knee motion following femoral fractures. J Trauma. 1987; 27(1): 49-51. doi: 10.1097/00005373-198701000-00009.
Oliveira VG, D'Elia LF, Tirico LE, Gobbi RG, Pecora JR, Camanho GL, et al. Judet quadricepsplasty in the treatment of posttraumatic knee rigidity: long-term outcomes of 45 cases. J Trauma Acute Care Surg. 2012; 72(2): E77-80. doi: 10.1097/ta.0b013e3182159e0a.
Zhang D, Nazarian A, Rodriguez EK. Post-traumatic elbow stiffness: Pathogenesis and current treatments. Shoulder Elb. 2020; 12(1): 38-45. doi: 10.1177/1758573218793903.
Smith SP, Devaraj VS, Bunker TD. The association between frozen shoulder and Dupuytren's disease. J Shoulder Elbow Surg. 2001; 10(2): 149-51. doi: 10.1067/mse.2001.112883.
Bunker TD, Anthony PP. The pathology of frozen shoulder. A Dupuytren-like disease. J Bone Joint Surg Br. 1995; 77(5): 677-83.
Blessing WA, Okajima SM, Cubria MB, Villa-Camacho JC, Perez-Viloria M, Williamson PM, et al. Intraarticular injection of relaxin-2 alleviates shoulder arthrofibrosis. Proc Natl Acad Sci U S A. 2019; 116(25): 12183-92. doi: 10.1073/pnas.1900355116.
Dehghan F, Soori R, Dehghan P, Gholami K, Muniandy S, Azarbayjani MA, et al. Changes in knee laxity and Relaxin receptor isoforms expression (RXFP1/RXFP2) in the knee throughout estrous cycle phases in rodents. PLoS One. 2016; 11(8): e0160984. doi: 10.1371/journal.pone.0160984.
Ekhtiari S, Horner NS, de Sa D, Simunovic N, Hirschmann MT, Ogilvie R, et al. Arthrofibrosis after ACL reconstruction is best treated in a step-wise approach with early recognition and intervention: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2017; 25(12): 3929-37. doi: 10.1007/s00167-017-4482-1.
Stinton SK, Beckley SJ, Branch TP. Efficacy of non-operative treatment of patients with knee arthrofibrosis using high-intensity home mechanical therapy: a retrospective review of 11,000+ patients. J Orthop Surg. 2022; 17(1): 337. doi: 10.1186/s13018-022-03227-w.
Biggs A, Shelbourne KD. Use of knee extension device during rehabilitation of a patient with type 3 arthrofibrosis after ACL reconstruction. N Am J Sports Phys Ther. 2006; 1(3): 124-31.
Finger E, Willis FB. Dynamic splinting for knee flexion contracture following total knee arthroplasty: a case report. Cases J. 2008; 1(1): 421. doi: 10.1186/1757-1626-1-421.
Bonutti PM, McGrath MS, Ulrich SD, McKenzie SA, Seyler TM, Mont MA. Static progressive stretch for the treatment of knee stiffness. Knee. 2008; 15(4): 272-6. doi: 10.1016/j.knee.2008.04.002.
Bonutti PM, Marulanda GA, McGrath MS, Mont MA, Zywiel MG. Static progressive stretch improves range of motion in arthrofibrosis following total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2010; 18(2): 194-9. doi: 10.1007/s00167-009-0947-1.
Pace JL, Nasreddine AY, Simoni M, Zurakowski D, Kocher MS. Dynamic splinting in children and adolescents with stiffness after knee surgery. J Pediatr Orthop. 2018; 38(1): 38-43. doi: 10.1097/BPO.0000000000000730.
Werner BC, Cancienne JM, Miller MD, Gwathmey FW. Incidence of Manipulation Under Anesthesia or Lysis of Adhesions After Arthroscopic Knee Surgery. Am J Sports Med. 2015; 43(7): 1656-61. doi: 10.1177/0363546515578660.
Fackler N, Chin G, Karasavvidis T, Bohlen H, Smith E, Amirhekmat A, et al. Outcomes of arthroscopic lysis of adhesions for the treatment of postoperative knee arthrofibrosis: a systematic review. Orthop J Sports Med. 2022; 10(9): 23259671221124911. doi: 10.1177/23259671221124911.