2022, Número 3
<< Anterior Siguiente >>
VacciMonitor 2022; 31 (3)
La mutación N15Y en la proteína E del coronavirus 2 del síndrome respiratorio agudo severo afecta la unión de doxiciclina y rutina
Dawood AA, Jasim BI, Al-jalily O
Idioma: Ingles.
Referencias bibliográficas: 20
Paginas: 127-134
Archivo PDF: 829.24 Kb.
RESUMEN
La variación genética del coronavirus 2 del síndrome respiratorio agudo severo debe ser monitoreada de cerca. La transmisión viral puede resultar inevitablemente de mutaciones en el genoma viral y proteínas funcionales que ayudan en la adaptación del virus al hospedero. Este estudio tuvo como objetivo buscar mutaciones en la proteína E y ver cómo afectaban el acoplamiento molecular de los ligandos. Se utilizó la mutagénesis de saturación matemática y otras técnicas informáticas. Se seleccionaron 14 aislamientos del coronavirus 2 del síndrome respiratorio agudo severo en Irak. Se eligieron doxiciclina y rutina como ligandos. En cuatro cepas del coronavirus 2 del síndrome respiratorio agudo severo, se detectó la mutación N15Y en la proteína de la envoltura. Dependiendo del cálculo de la cantidad de energía de los átomos, esta mutación es fundamental para modificar la forma de la proteína y aumentar la estabilidad de la proteína. En la mutación de cadena única, se determinó un bolsillo, mientras que todas las cadenas de pentámero tenían dos bolsillos. La mutación N15Y alteró el grado de unión de doxiciclina al afectar el residuo de unión de los ligandos. También alteró la posición de unión de la rutina a la proteína E, lo que tiene un claro impacto en la partícula del virión.
REFERENCIAS (EN ESTE ARTÍCULO)
Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2 or n-COV19), the Cause of COVID-19. Protein J. 2020; 39(3):198-216. doi: https://10.1007/s10930-020-09901-4.
Yang Y, Xiong Z, Zhang S, Yan Y, Nguyen J, Ng B, et al. Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J. 2005; 392 ( Pt 1):135-43.
Venkatagopalan P, Daskalova SM, Lopez LA, Dolezal KA, Hogue BG. Coronavirus envelope (E) protein remains at the site of assembly. Virology. 2015; 478:75-85. doi: https://10.1016/j.virol.2015.02.005.
Ruch TR, Machamer CE. The hydrophobic domain of infectious bronchitis virus E protein alters the host secretory pathway and is important for the release of infectious virus. J Virol. 2011; 85(2):675-85. doi: https://10.1128/JVI.01570-10.
Zheng Y, Zhuang MW, Han L, Zhang J, Nan ML, Zhan P, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduct Target Ther. 2020; 5(1):299. doi: https://10.1038/s41392-020-00438-7.
Thomas S. The Structure of the Membrane Protein of SARS-CoV-2 Resembles the Sugar Transporter SemiSWEET. Pathog Immun. 2020; 5(1):342-63. doi: https://10.20411/pai.v5i1.377.
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020; 26:450-2. doi: https://10.1038/s41591-020-0820-9.
Bhowmik D, Nandi R, Jagadeesan R, Kumar N, Prakash A, Kumar D. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches. Infect Genet Evol. 2020; 84:104451. doi: https://10.1016/j.meegid.2020.104451.
Walensky RP, Walke HT, Fauci AS. SARS-CoV-2 Variants of Concern in the United States Challenges and Opportunities. JAMA. 2021; 325(11):1037-8. doi: https:// 10.1001/jama.2021.2294.
Pandey U, Yee R, Shen L, Judkins AR, Bootwalla M, Ryutov A. High prevalence of SARS-CoV-2 genetic variation and D614G mutation in pediatric patients with COVID-19. Open Forum Inf Dis. 2021; 8(6): ofaa551. doi: https://10.1093/ofid/ofaa551.
Schein CH. Repurposing approved drugs on the pathway to novel therapies. Med Res Rev. 2020; 40(2):586-605. doi: https://10.1002/med.21627.
Shen L, Dien Bard J, Biegel JA, Judkins AR, Gai X. Comprehensive Genome Analysis of 6,000 USA SARS-CoV-2 Isolates Reveals Haplotype Signatures and Localized Transmission Patterns by State and by Country. Front Microbiol. 2020; 11:573430. doi: https://10.3389/fmicb.2020.573430.
Azeez SA, Alhashim ZG, Al Otaibi WM, Alsuwat HS, Ibrahim AM, Almandil NB, at al. State-of-the-art tools to identify druggable protein-ligand of SARS-CoV-2. Arch Med Sci. 2020; 16(3):497-507. doi: https://10.5114/aoms.2020.94046.
Dawood A, Altobje M. Inhibition of N-linked Glycosylation by Tunicamycin May Contribute to The Treatment of SARS-CoV-2. Microbiol Path. 2020; 149:104586. doi: https://10.1016/j.micpath.2020.104586.
Li Q, Wu J, Nie J, Li X, Huang W, Wang Y, et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 2020; 182(5): 1248-94. doi: https://10.1016/j.cell.2020.07.012.
Dawood A, Altobje M, Alrassam Z. Molecular Docking of SARS-CoV-2 Nucleocapsid Protein with Angiotensin-Converting Enzyme II. Mikrobiol Z. 2021; 83(2):82-92. doi: https://10.15407/microbiolj83.02.082.
Elbe S, Buckland-Merrett G. Data, disease, and diplomacy: GISAID's innovative contribution to global health. Glob Chall. 2017; 1(1):33-46. doi: https://10.1002/gch2.1018.
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Comm. 2020; 11:1620. doi: https://10.1038/s41467-020-15562-9.
Dawood A. Increasing the frequency of omicron variant mutations boosts the immune response and may reduce the virus virulence. Microb Pathog. 2022; 164: 105400. doi: https://10.1016/j.micpath.2022.105400.
Shen L, Maglinte DT, Ostrow D, Pandey U, Bootwalla M, Ryutov A, et al. Children's Hospital Los Angeles COVID-19 Analysis Research Database (CARD) - A Resource for Rapid SARS-CoV-2 Genome Identification Using Interactive Online Phylogenetic Tools. bioRxiv. 2020. doi: https://10.1101/2020.05.11.089763.