2022, Número 1
<< Anterior Siguiente >>
Rev Cub Med Mil 2022; 51 (1)
Combinaciones de síndrome metabólico y riesgo de diabetes mellitus
Vera-Ponce VJ, Talavera JE, Torres-Malca JR, De La Cruz-Vargas JA
Idioma: Español
Referencias bibliográficas: 28
Paginas:
Archivo PDF: 275.82 Kb.
RESUMEN
Introducción:
El síndrome metabólico se asocia con un mayor riesgo de padecer diabetes, por lo que su identificación clínica ayuda a identificar a estos pacientes con alto riesgo.
Objetivo:
Determinar las combinaciones de síndrome metabólico para el riesgo de diabetes mellitus tipo 2 en una muestra de pobladores peruanos.
Métodos:
Análisis secundario de un estudio de cohorte de 5 años, de la base de datos del estudio PERU MIGRANT. Los componentes alterados del síndrome metabólico fueron lipoproteínas de alta densidad bajo, hipertrigliceridemia; glucosa, presión arterial y cintura abdominal elevadas. En total 35 subgrupos de componentes: 5 grupos para cada uno de los 5 componentes, 10 grupos de combinaciones de 2 componentes y 3 componentes, 5 grupos para la combinación de 4 componentes.
Resultados:
En el análisis de regresión múltiple, la glucosa como factor independiente presentó un RR estadísticamente significativo (RR= 9,02; IC: 95 % 2,45 - 33,24; p= 0,001). La combinación de 2 factores, presentaron un RR estadísticamente significativo, la glucosa - cintura abdominal (RR= 7,28; IC: 95 % 1,21 - 43,64; p= 0,030) y glucosa - alta densidad bajo (RR= 10,94; IC: 95 % 2,71 - 44,23; p= 0,001). Finalmente, la combinación de glucosa - lipoproteínas de alta densidad - cintura abdominal tenían 7,80 veces el riesgo de presentar diabetes mellitus tipo 2 versus quienes no lo presentaban (RP= 7,80; IC: 95 % 1,39 - 43,77; p= 0,020).
Conclusión:
Las combinaciones que incluyen al mismo tiempo glucosa - lipoproteínas de alta densidad - cintura abdominal, fueron las combinaciones que más asociaron.
REFERENCIAS (EN ESTE ARTÍCULO)
Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11(8):215-25. DOI: 10.1177/1753944717711379
McCracken E, Monaghan M, Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin Dermatol. 2018;36(1):14-20. DOI: 10.1016/j.clindermatol.2017.09.004
Herath HMM, Weerasinghe NP, Weerarathna TP, Amarathunga A. A Comparison of the Prevalence of the Metabolic Syndrome among Sri Lankan Patients with Type 2 Diabetes Mellitus Using WHO, NCEP-ATP III, and IDF Definitions. Int J Chronic Dis. 2018; 2018:7813537. DOI: 10.1155/2018/7813537
Saklayen MG. The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018;20(2):12. DOI: 10.1007/s11906-018-0812-z
Li R, Li W, Lun Z, Zhang H, Sun Z, Kanu JS, et al. Prevalence of metabolic syndrome in Mainland China: a meta-analysis of published studies. BMC Public Health. 2016;16:296. DOI: 10.1186/s12889-016-2870-y
Moore JX, Chaudhary N, Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988-2012. Prev Chronic Dis. 2017;14:E24. DOI: 10.5888/pcd14.160287
Cuevas A, Alvarez V, Carrasco F. Epidemic of metabolic syndrome in Latin America. Curr Opin Endocrinol Diabetes Obes. 2011;18(2):134-8. DOI: 10.1097/MED.0b013e3283449167
Vizmanos B, Betancourt-Nuñez A, Márquez-Sandoval F, González-Zapata LI, Monsalve-Álvarez J, Bressan J, et al. Metabolic Syndrome Among Young Health Professionals in the Multicenter Latin America Metabolic Syndrome Study. Metab Syndr Relat Disord. 2020;18(2):86-95. DOI: 10.1089/met.2019.0086
Chávez VEJ, Villena Chávez JE Prevalencia de sobrepeso y obesidad en el Perú. Rev Peru Ginecol Obstet. 2017 [acceso: 13/09/2021];63(4):593-8. Disponible en: Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2304-51322017000400012
Hudish LI, Reusch JE, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest. 2019;129(10):4001-8. DOI: 10.1172/JCI129188
Noale M, Maggi S, Marzari C, Limongi F, Gallina P, Bianchi D, et al. Components of the metabolic syndrome and incidence of diabetes in elderly Italians: the Italian Longitudinal Study on Aging. Atherosclerosis. 2006;187(2):385-92. DOI: 10.1016/j.atherosclerosis.2005.09.018
Wilson PWF, D’Agostino RB, Parise H, Sullivan L, Meigs JB. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112(20):3066-72. DOI: 10.1161/CIRCULATIONAHA.105.539528
Lee M-K, Han K, Kim MK, Koh ES, Kim ES, Nam GE, et al. Changes in metabolic syndrome and its components and the risk of type 2 diabetes: a nationwide cohort study. Sci Rep. 2020;10(1):2313. DOI: 10.1038/s41598-020-59203-z
Cho A-R, Kwon Y-J, Kim J-K. Pre-Metabolic Syndrome and Incidence of Type 2 Diabetes and Hypertension: From the Korean Genome and Epidemiology Study. J Pers Med. 2021;11(8):700. DOI: 10.3390/jpm11080700
Lee M-K, Han K, Kim MK, Koh ES, Kim ES, Nam GE, et al. Combinations of metabolic syndrome components and the risk of type 2 diabetes mellitus: A nationwide cohort study. Diabetes Res Clin Pract. 2020;165. DOI: 10.1016/j.diabres.2020.108237
Kurotani K, Miyamoto T, Kochi T, Eguchi M, Imai T, Nishihara A, et al. Metabolic syndrome components and diabetes incidence according to the presence or absence of impaired fasting glucose: The Japan Epidemiology Collaboration on Occupational Health Study. J Epidemiol. 2017;27(9):408-12. DOI: 10.1016/j.je.2016.08.015
Miranda JJ, Gilman RH, García HH, Smeeth L. The effect on cardiovascular risk factors of migration from rural to urban areas in Peru: PERU MIGRANT Study. BMC Cardiovasc Disord. 2009;9:23. DOI: 10.1186/1471-2261-9-23
PERU MIGRANT Study | Baseline and 5yr follow-up dataset. Figshare; 2017. [acceso: 13/09/2021] Disponible en: Disponible en: https://figshare.com/articles/dataset/PERU_MIGRANT_Study_Baseline_and_5yr_follow-up_dataset/4832612/3
Heianza Y, Kato K, Kodama S, Ohara N, Suzuki A, Tanaka S, et al. Risk of the development of Type 2 diabetes in relation to overall obesity, abdominal obesity and the clustering of metabolic abnormalities in Japanese individuals: does metabolically healthy overweight really exist? The Niigata Wellness Study. Diabet Med. 2015;32(5):665-72. DOI: 10.1111/dme.12646
American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S46-60. DOI: 10.2337/dc19-S005
Mohammad S, Ahmad J. Management of obesity in patients with type 2 diabetes mellitus in primary care. Diabetes Metab Syndr. 2016;10(3):171-81. DOI: 10.1016/j.dsx.2016.01.017
Verma S, Hussain ME. Obesity and diabetes: An update. Diabetes Metab Syndr. 2017;11(1):73-9. DOI: 10.1016/j.dsx.2016.06.017
Thambiah SC, Lai LC. Diabetic dyslipidaemia. Pract Lab Med. 2021;26:e00248. DOI: 10.1016/j.plabm.2021.e00248
Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018;25(9):771-82. DOI: 10.5551/jat.RV17023
Duclos M. Osteoarthritis, obesity and type 2 diabetes: The weight of waist circumference. Ann Phys Rehabil Med. 2016;59(3):157-60. DOI: 10.1016/j.rehab.2016.04.002
Srivastava RAK. Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascular disease. Mol Cell Biochem. 2018;440(1-2):167-87. DOI: 10.1007/s11010-017-3165-z
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia. 2021;64(9):1917-26. DOI: 10.1007/s00125-021-05509-0
Er L-K, Wu S, Chou H-H, Hsu L-A, Teng M-S, Sun Y-C, et al. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PloS One. 2016;11(3):e0149731. DOI: 10.1371/journal.pone.0149731