2023, Número 5
<< Anterior Siguiente >>
salud publica mex 2023; 65 (5)
Síndrome de riesgo cognitivo motor y su asociación con caídas: un análisis secundario del Estudio Nacional sobre Salud y Envejecimiento en México
Márquez I, Carrillo-Vega MF, Pérez-Zepeda MU, Cano-Gutiérrez C
Idioma: Español
Referencias bibliográficas: 24
Paginas: 523-529
Archivo PDF: 278.68 Kb.
RESUMEN
Objetivo. Revelar si el síndrome de riesgo cognitivo motor
(SCM) se asocia con caídas, caídas recurrentes y caídas
complicadas en adultos mayores mexicanos.
Material y
métodos. Análisis secundario del Estudio Mexicano de Salud
y Envejecimiento. El SCM se evaluó en 2012 y los desenlaces
relacionados con caídas (recurrente [≥2], complicado [necesidad
de tratamiento médico] y número) en 2018. Se realizó análisis
de riesgos competitivos (subhazard ratios [sHR]) y regresión
binomial negativa (número de caídas, razones de tasas de incidencia
[IRR]).
Resultados. De 1 929 participantes la mediana
de edad fue de 62 años y 58.3% eran mujeres. La prevalencia
de SCM fue de 17.4% y se asoció con caídas sHR 1.11 (intervalo
de confianza [IC] 95%: 1.11,1.12), caídas recurrentes sHR
1.16 (IC95%: 1.15,1.16), caídas complicadas sHR 1.25 (IC95%:
1.24,1.25) y número de caídas (IRR 1.19, IC95%: 1.01,1.40;
p=
0.039).
Conclusión. Los resultados muestran que el SCM se
asocia de forma independiente con caídas y otros desenlaces
relacionados. Aumentar la evidencia sobre cómo el SCM se anticipa
a los síndromes geriátricos como las caídas podría conducir
a acciones para intervenir estos problemas.
REFERENCIAS (EN ESTE ARTÍCULO)
Carpenter CR, Cameron A, Ganz DA, Liu S. Older adult falls inemergency medicine-a sentinel event. Clin Geriatr Med. 2018;34(3):355-67. https://doi.org/10.1016/j.cger.2018.04.002
Dautzenberg L, Beglinger S, Tsokani S, Zevgiti S, Raijmann R, RodondiN, et al. Interventions for preventing falls and fall-related fractures incommunity-dwelling older adults: A systematic review and network metaanalysis.J Am Geriatr Soc. 2021;69(10):2973-84. https://doi.org/10.1111/jgs.17375
Shi J, Zhou BY, Tao YK, Yu PL, Zhang CF, Qin ZH, et al. Incidence andassociated factors for single and recurrent falls among the elderly in anurban community of Beijing. Biomed Environ Sci. 2014;27:939-49. https://doi.org/10.3967/bes2014.134
Tinetti ME, Inouye SK, Gill TM, Doucette JT. Shared risk factors forfalls, incontinence, and functional dependence. Unifying the approach togeriatric syndromes. Jama. 1995;273(17):1348-53. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7715059
Li Y, Hou L, Zhao H, Xie R, Yi Y, Ding X. Risk factors for falls amongcommunity-dwelling older adults: A systematic review and meta-analysis.Front Med. 2022;9:1019094. https://doi.org/10.3389/fmed.2022.1019094
Ruiz-Ruiz L, Jimenez AR, Garcia-Villamil G, Seco F. Detecting fall riskand frailty in elders with inertial motion sensors: a survey of significantgait parameters. Sensors. 2021;21(20):6918. https://doi.org/10.3390/s21206918
Inoue T, Kamijo K, Haraguchi K, Suzuki A, Noto M, Yamashita Y, et al.Risk factors for falls in terms of attention during gait in communitydwellingolder adults. Geriatr Gerontol Int. 2018;18:1267-71. https://doi.org/10.1111/ggi.13462
Udina C, Ayers E, Inzitari M, Verghese J. Walking while talking andprefrontal oxygenation in motoric cognitive risk syndrome: clinical andpathophysiological aspects. J Alzheimers Dis. 2021;84:1585-96. https://doi.org/10.3233/JAD-210239
Maggio M, Lauretani F. Prevalence, incidence, and clinical impact ofcognitive-motoric risk syndrome in Europe, USA, and Japan: facts andnumbers update 2019. J Cachexia Sarcopenia Muscle. 201;10:953-5.https://doi.org/10.1002/jcsm.12476
Verghese J, Wang C, Lipton RB, Holtzer R. Motoric cognitive risksyndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci.2013;68(4):412-8.
Verghese J, Annweiler C, Ayers E, Barzilai N, Beauchet O, BennettDA, et al. Motoric cognitive risk syndrome: multicountry prevalenceand dementia risk. Neurology. 2014;83:718-26. https://doi.org/10.1212/WNL.0000000000000717
Aguilar-Navarro SG, Mimenza-Alvarado AJ, Aguilar-Esquivel JE, Yeverino-Castro SG, Juarez-Cedillo T, Mejia-Arango S. Motoric cognitive risksyndrome: Prevalence and Risk of cognitive impairment in a populationstudied in the Mexican Health and Aging Study 2012-2015. J Nutr HealthAging. 2019;23:227-31. https://doi.org/10.1007/s12603-019-1160-7
Lu WW, Liu BZ, Lv MZ, Tu JK, Kang ZR, Hu RP, et al. Associationbetween motoric cognitive risk syndrome and future falls among Chinesecommunity-dwelling elderly: A nationwide cohort study. Brain Behav.2023:e3044. https://doi.org/10.1002/brb3.3044
Beauchet O, Sekhon H, Schott A-M, Rolland Y, Muir-Hunter S, Markle-Reid M, et al. Motoric cognitive risk syndrome and risk for falls, theirrecurrence, and postfall fractures: results from a prospective observationalpopulation-based cohort study. J Am Med Dir Assoc. 2019;20:1268-73.https://doi.org/10.1016/j.jamda.2019.04.021
Callisaya ML, Ayers E, Barzilai N, Ferrucci L, Guralnik JM, Lipton RB, etal. Motoric cognitive risk syndrome and falls risk: a multi-center study. JAlzheimers Dis. 2016;53:1043-52. https://doi.org/10.3233/JAD-160230
Wong R, Michaels-Obregon A, Palloni A. Cohort profile: The MexicanHealth and Aging Study (MHAS). Int J Epidemiol. 2017;46:e2. https://doi.org/10.1093/ije/dyu263
Pérez-Zepeda MU, González-Chavero JG, Salinas-Martínez R,Gutiérrez-Robledo LM. Risk factors for slow gait speed: a nested casecontrolsecondary analysis of the Mexican Health and aging study. Journalof Frailty and Aging. 2015;4. https://doi.org/10.14283/jfa.2015.63
Mejia-Arango S, Wong R, Michaels-Obregon A. Normative andstandardized data for cognitive measures in the Mexican Health and AgingStudy. Salud Publica Mex. 2015;57:S90-6. https://doi.org/10.21149/spm.v57s1.7594
Ho ISS, Azcoaga-Lorenzo A, Akbari A, Davies J, Khunti K,Kadam UT, et al. Measuring multimorbidity in research: Delphiconsensus study. BMJ Med. 2022;1:e000247. https://doi.org/10.1136/bmjmed-2022-000247
Grande G, Triolo F, Nuara A, Welmer AK, Fratiglioni L, VetranoDL. Measuring gait speed to better identify prodromal dementia. ExpGerontol. 2019;124:110625. https://doi.org/10.1016/j.exger.2019.05.014
Meiner Z, Ayers E, Verghese J. Motoric cognitive risk syndrome: a riskfactor for cognitive impairment and dementia in different populations. AnnGeriatr Med Res. 2020;24:3-14. https://doi.org/ 10.4235/agmr.20.0001
Faes MC, Reelick MF, Esselink RA, Rikkert MG. Developing andevaluating complex healthcare interventions in geriatrics: the use ofthe medical research council framework exemplified on a complex fallprevention intervention. J Am Geriatr Soc. 2010;58:2212-21. https://doi.org/10.1111/j.1532-5415.2010.03108.x
Company-Sancho MC, Alonso-Poncelas E, Rich-Ruiz M, Cidoncha-Moreno MA, Gonzalez-Pisano A, Abad-Corpa E, et al. The relationbetween functional performance, falls and previous falls amongparticipants in the Otago Programme: A secondary data analysis. Int JEnviron Res Public Health. 2021;18(12):6501. https://doi.org/10.3390/ijerph18126501
Scott D, Johansson J, Gandham A, Ebeling PR, Nordstrom P, NordstromA. Associations of accelerometer-determined physical activity andsedentary behavior with sarcopenia and incident falls over 12 months incommunity-dwelling Swedish older adults. J Sport Health Sci. 2021;10:577-84. https://doi.org/10.1016/j.jshs.2020.01.006