2022, Número 1
PTP-PEST: Vías de señalización y su importancia como blanco terapéutico en cáncer
Idioma: Español
Referencias bibliográficas: 76
Paginas: 1-13
Archivo PDF: 505.63 Kb.
RESUMEN
La fosfatasa de tirosina PTP-PEST, también llamada PTPN12, es una proteína que se expresa de forma ubicua, y se regula por fosforilación en los residuos de serina y treonina. El gen PTPN12, en humanos, se localiza en el cromosoma 7q11.23. La proteína codificada está formada por una región N-terminal, seguida de un dominio catalítico de fosfatasa de tirosina (PTP, por sus siglas en inglés) y una cola C-terminal que contiene secuencias ricas en prolina, ácido glutámico, serina y treonina (PEST), así como, una secuencia NPLH (asparagina, prolina, leucina, histidina) que es un sitio de anclaje para las proteínas involucradas en la transducción de señales.La PTP-PEST regula procesos fisiológicos como la migración celular, la respuesta inmune, y la actividad neuronal, a través de la desfosforilación de múltiples sustratos entre los que se cuentan proteínas adaptadoras del citoesqueleto como la paxilina, y otras involucradas en diferentes vías de señalización, algunas de las cuales aún no han sido completamente elucidadas.
Se ha demostrado la alteración de la PTP-PEST en diferentes enfermedades como el cáncer, por lo que se ha estudiado como un posible blanco terapéutico. Esta revisión se enfoca en la clasificación, estructura y el papel tanto fisiológico como patológico de la PTP-PEST.
REFERENCIAS (EN ESTE ARTÍCULO)
Andersen, J. N., Mortensen, O. H., Peters, G. H., Drake,P. G., Iversen, L. F., Olsen, O. H., Jansen, P. G.,Andersen, H. S., Tonks, N. K. & Møller, N. P. H. (2001).Structural and Evolutionary Relationships among ProteinTyrosine Phosphatase Domains. Molecular and CellularBiology, 21(21), 7117–7136. https://doi.org/10.1128/mcb.21.21.7117-7136.2001
Angers-Loustau, A., Côté, J. F., Charest, A., Dowbenko, D.,Spencer, S., Lasky, L. A. & Tremblay, M. L. (1999).Protein tyrosine phosphatase-PEST regulates focal adhesiondisassembly, migration, and cytokinesis in fibroblasts.Journal of Cell Biology, 144(5), 1019–1031. https://doi.org/10.1083/jcb.144.5.1019
Côté, J.-F., Charest, A., Wagner, J. & Tremblay, M. L. (1998).Combination of Gene Targeting and Substrate Trapping toIdentify Substrates of Protein Tyrosine Phosphatases UsingPTP-PEST as a Model. Biochemistry, 37(38), 13128–13137.https://doi.org/10.1021/bi981259l. Davidson, D. (2001). PTP-PEST, a scaffold protein tyrosinephosphatase, negatively regulates lymphocyte activationby targeting a unique set of substrates. The EMBOJournal, 20(13), 3414–3426. https://doi.org/10.1093/emboj/20.13.3414
Day, B. W., Stringer, B. W., Al-Ejeh, F., Ting, M. J., Wilson,J., Ensbey, K. S., Jamieson, P. R., Bruce, Z. C., Lim, Y. C.,Offenhäuser, C., Charmsaz, S., Cooper, L. T., Ellacott, J. K.,Harding, A., Leveque, L., Inglis, P., Allan, S., Walker, D. G.,Lackmann, M., Osborne, G., Khanna, K. K., Reynolds, B.A., Lickliter, J. D., Boyd, A. W. (2013). EphA3 maintainstumorigenicity and is a therapeutic target in glioblastomamultiforme. Cancer Cell, 23(2), 238–248. https://doi.org/10.1016/j.ccr.2013.01.007
Espejo, R., Jeng, Y., Paulucci-Holthauzen, A., Rengifo-Cam,W., Honkus, K., Anastasiadis, P. Z. & Sastry, S. K. (2014).PTP-PEST targets a novel tyrosine site in p120 catenin tocontrol epithelial cell motility and Rho GTPase activity.Journal of Cell Science, 127(3), 497–508. https://doi.org/10.1242/jcs.120154
Garton, A. J. & Tonks, N. K. (1999). Regulation of fibroblastmotility by the protein tyrosine phosphatase PTP-PEST.The Journal of Biological Chemistry, 274(6), 3811–3818.https://doi.org/10.1074/jbc.274.6.3811Gerson, J. N., Skariah, S., Denlinger, C. S. & Astsaturov, I.(2017). Perspectives of HER2-targeting in gastric andesophageal cancer. Expert Opinion on InvestigationalDrugs, 26(5), 531–540. https://doi.org/10.1080/13543784.2017.1315406
Hanks, S. K. & Hunter, T. (1995). Protein kinases 6. Theeukaryotic protein kinase superfamily: kinase (catalytic)domain structure and classification. FASEB Journal :Official Publication of the Federation of American Societiesfor Experimental Biology, 9(8), 576–596. http://www.ncbi.nlm.nih.gov/pubmed/7768349
Imoto, M., Kakeya, H., Sawa, T., Hayashi, C., Hamada, M.,Takekuchi, T. & Umezawa, K. (1993). Dephostatin, anovel protein tyrosine phosphatase inhibitor produced byStreptomyces. I. Taxonomy,isolation, and characterization.The Journal of Antibiotics, 46(9), 1342–1346. https://doi.org/10.7164/antibiotics.46.1342
Karakas, C., Biernacka, A., Bui, T., Sahin, A. A., Yi, M., Akli,S., Schafer, J., Alexander, A., Adjapong, O., Hunt, K. K. &Keyomarsi, K. (2016). Cytoplasmic Cyclin E and Phospho-Cyclin-Dependent Kinase 2 Are Biomarkers of AggressiveBreast Cancer. The American Journal of Pathology, 186(7),1900–1912. https://doi.org/10.1016/j.ajpath.2016.02.024
Kim, S. J., Masuda, N., Tsukamoto, F., Inaji, H., Akiyama, F.,Sonoo, H., Kurebayashi, J., Yoshidome, K., Tsujimoto,M., Takei, H., Masuda, S., Nakamura, S. & Noguchi, S.(2014). The cell cycle profiling-risk score based on CDK1and 2 predicts early recurrence in node-negative, hormonereceptor-positive breast cancer treated with endocrinetherapy. Cancer Letters, 355(2), 217–223. https://doi.org/10.1016/j.canlet.2014.08.042
Kim, S. J., Nakayama, S., Shimazu, K., Tamaki, Y., Akazawa, K.,Tsukamoto, F., Torikoshi, Y., Matsushima, T., Shibayama,M., Ishihara, H. & Noguchi, S. (2012). Recurrence riskscore based on the specific activity of CDK1 and CDK2predicts response to neoadjuvant paclitaxel followed by5-fluorouracil, epirubicin and cyclophosphamide in breastcancers. Annals of Oncology, 23(4), 891–897. https://doi.org/10.1093/annonc/mdr340
Li, H., Yang, D., Ning, S., Xu, Y., Yang, F., Yin, R., Feng, T., Han,S., Guo, L., Zhang, P., Qu, W., Guo, R., Song, C., Xiao, P.,Zhou, C., Xu, Z., Sun, J. P. & Yu, X. (2018). Switching of thesubstrate specificity of protein tyrosine phosphatase N12 bycyclin-dependent kinase 2 phosphorylation orchestrating 2oncogenic pathways. FASEB Journal, 32(1), 73–82. https://doi.org/10.1096/fj.201700418R
Li, H., Yang, F., Liu, C., Xiao, P., Xu, Y., Liang, Z., Liu, C.,Wang, H., Wang, W., Zheng, W., Zhang, W., Ma, X., He, D.,Song, X., Cui, F., Xu, Z., Yi, F., Sun, J. P. & Yu, X. (2016).Crystal Structure and Substrate Specificity of PTPN12.Cell Reports, 15(6), 1345–1358. https://doi.org/10.1016/j.celrep.2016.04.016
Piao, Y., Liu, X., Lin, Z., Jin, Z., Jin, X., Yuan, K. & Wu,W. (2015). Decreased expression of protein tyrosinephosphatase non‑receptor type 12 is involved in theproliferation and recurrence of bladder transitional cellcarcinoma. Oncology Letters, 10(3), 1620–1626. https://doi.org/10.3892/ol.2015.3454
Shen, N., Li, L., Xu, W., Tian, J., Yang, Y., Zhu, Y., Gong, Y.,Ke, J., Gong, J., Chang, J., Zhong, R. & Miao, X. (2019).A missense variant in PTPN12 associated with the risk ofcolorectal cancer by modifying Ras/MEK/ERK signaling.Cancer Epidemiology, 59(January), 109–114. https://doi.org/10.1016/j.canep.2019.01.013
Shen, Y., Lyons, P., Cooley, M., Davidson, D., Veillette, A.,Salgia, R., Griffin, J. D. & Schaller, M. D. (2000). TheNoncatalytic Domain of Protein-tyrosine Phosphatase-PEST Targets Paxillin for Dephosphorylation in vivo.Journal of Biological Chemistry, 275(2), 1405–1413.https://doi.org/10.1074/jbc.275.2.1405
Sirois, J., Côté, J. F., Charest, A., Uetani, N., Bourdeau,A., Duncan, S. A., Daniels, E. & Tremblay, M. L.(2006). Essential function of PTP-PEST during mouseembryonic vascularization, mesenchyme formation,neurogenesis and early liver development. Mechanisms ofDevelopment, 123(12), 869–880. https://doi.org/10.1016/j.mod.2006.08.011
Sun, T., Aceto, N., Meerbrey, K. L., Kessler, J. D., Zhou, C.,Migliaccio, I., Nguyen, D. X., Pavlova, N. N., Botero,M., Huang, J., Bernardi, R. J., Schmitt, E., Hu, G., Li, M.Z., Dephoure, N., Gygi, S. P., Rao, M., Creighton, C. J.,Hilsenbeck, S. G., Shaw, C. A., Muzny, D., Gibbs, R. A.,Wheeler, D. A., Osborne, C. K., Schiff, R., Bentires-Alj,M., Elledge, S. J., Westbrook, T. F. (2011). Activation ofmultiple proto-oncogenic tyrosine kinases in breast cancervia loss of the PTPN12 phosphatase. Cell, 144(5), 703–718.https://doi.org/10.1016/j.cell.2011.02.003
Takekawa, M., Itoh, F., Hinoda, Y., Arimura, Y., Toyota, M.,Sekiya, M., Adachi, M., Imai, K. & Yachi, A. (1992).Cloning and characterization of a human cDNA encodinga novel putative cytoplasmic protein-tyrosine-phosphatase.Biochemical and Biophysical Research Communications,189(2), 1223–1230. https://doi.org/10.1016/0006-291X(92)92335-U
Vail, M. E., Murone, C., Tan, A., Hii, L., Abebe, D., Janes, P. W.,Lee, F.-T., Baer, M., Palath, V., Bebbington, C., Yarranton,G., Llerena, C., Garic, S., Abramson, D., Cartwright, G.,Scott, A. M. & Lackmann, M. (2014). Targeting EphA3inhibits cancer growth by disrupting the tumor stromalmicroenvironment. Cancer Research, 74(16), 4470–4481.https://doi.org/10.1158/0008-5472.CAN-14-0218
Wimmer-Kleikamp, S. H., Nievergall, E., Gegenbauer, K.,Adikari, S., Mansour, M., Yeadon, T., Boyd, A. W., Patani,N. R. & Lackmann, M. (2008). Elevated protein tyrosinephosphatase activity provokes Eph/ephrin-facilitatedadhesion of pre-B leukemia cells. Blood, 112(3), 721–732.https://doi.org/10.1182/blood-2007-11-121681
Xu, Y., Taylor, P., Andrade, J., Ueberheide, B., Shuch, B., Glazer,P. M., Bindra, R. S., Moran, M. F., Linehan, W. M. & Neel,B. G. (2018). Pathologic Oxidation of PTPN12 UnderliesABL1 Phosphorylation in Hereditary Leiomyomatosis andRenal Cell Carcinoma. Cancer Research, 78(23), 6539–6548. https://doi.org/10.1158/0008-5472.CAN-18-0901
Yang, C. F., Chen, Y. Y., Singh, J. P., Hsu, S. F., Liu, Y. W., Yang,C. Y., Chang, C. W., Chen, S. N., Shih, R. H., Hsu, S. T. D.,Jou, Y. S., Cheng, C. F. & Meng, T. C. (2020). Targetingprotein tyrosine phosphatase PTP-PEST (PTPN12) fortherapeutic intervention in acute myocardial infarction.Cardiovascular Research, 116(5), 1032–1046. https://doi.org/10.1093/cvr/cvz165