2022, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2022; 25 (1)
La oxidasa alterna, una metaloproteína conservada en hongos
Romero-Aguilar L, Luqueño-Bocardo OI, Guerra-Sánchez G, Matus-Ortega G, Pardo JP
Idioma: Español
Referencias bibliográficas: 48
Paginas: 1-11
Archivo PDF: 805.71 Kb.
RESUMEN
La oxidasa alterna (AOX) es una metaloproteína monotópica que se encuentra unida a la cara interna de la membrana interna
mitocondrial. Esta enzima cataliza la transferencia de electrones del ubiquinol al oxígeno con formación de agua como uno de los
productos. Cuando la vía citocrómica se inhibe por la presencia de cianuro u otros agentes xenobióticos, la AOX permite el flujo
de electrones del NADH al oxígeno y, por tanto, la actividad catabólica y anabólica del ciclo de Krebs. La AOX se encuentra en
plantas, hongos, algunos protistas y metazoarios primitivos y se le ha atribuido la capacidad de conferir osmoprotección y resistencia
al estrés oxidativo en las células. En esta revisión, se analiza la estructura de la enzima, se aborda su participación en la respuesta
ante el estrés osmótico y oxidativo en hongos, su influencia en la síntesis de ATP y la regulación de su expresión genética.
REFERENCIAS (EN ESTE ARTÍCULO)
Albury, M. S., Elliott, C. & Moore, A. L. (2009). Towards astructural elucidation of the alternative oxidase in plants.Physiologia Plantarum, 137(4), 316–327. https://doi.org/10.1111/j.1399-3054.2009.01270.x
Albury, M. S., Elliott, C. & Moore, A. L. (2010). Ubiquinolbindingsite in the alternative oxidase: Mutagenesis revealsfeatures important for substrate binding and inhibition.Biochimica. Biophysica Acta, 1797(12), 1933–1939. https://doi.org/10.1016/j.bbabio..2010.01.013
Atteia, A., van Lis, R., van Hellemond, J. J., Tielens, A. G.M., Martin, W. & Henze, K. (2004). Identification ofprokaryotic homologues indicates an endosymbiotic originfor the alternative oxidases of mitochondria (AOX) andchloroplasts (PTOX). Gene, 330, 143–148. https://doi.org/10.1016/j.gene.2004.01.015
Avila-Adame, C. & Köller, W. (2002). Disruption of thealternative oxidase gene in Magnaporthe grisea andits impact on host infection. Molecular Plant-MicrobeInteractions: MPMI, 15(5), 493–500. https://doi.org/10.1094/MPMI.2002.15.5.493
Berthold, D. A., Andersson, M. E. & Nordlund, P. (2000). Newinsight into the structure and function of the alternativeoxidase. Biochimica. Biophysica Acta, 1460(2–3), 241–254.https://doi.org/10.1016/s0005-2728(00)00149-3
Bosnjak, N., Smith, K. M., Asaria, I., Lahola-Chomiak, A.,Kishore, N., Todd, A. T., Freitag, M. & Nargang, F. E.(2019). Involvement of a G Protein Regulatory Circuit inAlternative Oxidase Production in Neurospora crassa. G3(Bethesda, Md.), 9(10), 3453–3465. https://doi.org/10.1534/g3.119.400522
Cárdenas-Monroy, C. A., Pohlmann, T., Piñón-Zárate, G.,Matus-Ortega, G., Guerra, G., Feldbrügge, M. & Pardo,J. P. (2017). The mitochondrial alternative oxidase Aox1is needed to cope with respiratory stress but dispensablefor pathogenic development in Ustilago maydis. PLOSONE, 12(3), e0173389. https://doi.org/10.1371/journal.pone.0173389
Chae, M. S., Lin, C. C., Kessler, K. E., Nargang, C. E., Tanton,L. L., Hahn, L. B. & Nargang, F. E. (2007). Identification ofan alternative oxidase induction motif in the promoter regionof the aod-1 gene in Neurospora crassa. Genetics, 175(4),1597–1606. https://doi.org/10.1534/genetics.106.068635
Chaudhuri, M., Ott, R. D. & Hill, G. C. (2006). Trypanosomealternative oxidase: From molecule to function. Trends inparasitology, 22(10), 484–491. https://doi.org/10.1016/j.pt.2006.08.007
Costa-de-Oliveira, S., Sampaio-Marques, B., Barbosa, M.,Ricardo, E., Pina-Vaz, C., Ludovico, P. & Rodrigues, A.G. (2012). An alternative respiratory pathway on Candidakrusei: Implications on susceptibility profile and oxidativestress. FEMS Yeast Research, 12(4), 423–429. https://doi.org/10.1111/j.1567-1364.2012.00789.x
Delano, W. (2004). Use of PyMOL as a communications toolfor molecular science. Abstracts of Papers of the AmericanChemical Society, Amer. Chemical Soc., 16th St, NWWashington, DC, Volume 228, p. U228–U230.
Descheneau, A. T., Cleary, I. A. & Nargang, F. E. (2005). GeneticEvidence for a Regulatory Pathway Controlling AlternativeOxidase Production in Neurosporacrassa. Genetics, 169(1),123–135. https://doi.org/10.1534/genetics.104.034017
Dunn, A. K. (2018). Alternative Oxidase Activity ReducesStress in Vibrio fischeri Cells Exposed to Nitric Oxide.Journal of Bacteriologists, 200(15), e00797-17. https://doi.org/10.1128/JB.00797-17
Ebiloma, G. U., Balogun, E. O., Cueto-Díaz, E. J., de Koning, H.P. & Dardonville, C. (2019). Alternative oxidase inhibitors:Mitochondrion-targeting as a strategy for new drugsagainst pathogenic parasites and fungi. Medicinal ResearchReviews, 39(5), 1553–1602. DOI:10.1002/med.21560.
García, J. J., Morales-Ríos, E., Cortés-Hernandez, P. &Rodríguez-Zavala, J. S. (2006). The inhibitor protein (IF1)promotes dimerization of the mitochondrial F1F0-ATPsynthase. Biochemistry, 45(42), 12695–12703. https://doi.org/10.1021/bi060339j
Garcia-Neto, W., Cabrera-Orefice, A., Uribe-Carvajal, S.,Kowaltowski, A. J. & Alberto Luévano-Martínez, L. (2017).High Osmolarity Environments Activate the MitochondrialAlternative Oxidase in Debaryomyces hansenii. PLOSOne, 12(1), e0169621. https://doi.org/10.1371/journal.pone.0169621
Grahl, N., Dinamarco, T. M., Willger, S. D., Goldman, G. H. &Cramer, R. A. (2012). Aspergillus fumigatus mitochondrialelectron transport chain mediates oxidative stresshomeostasis, hypoxia responses and fungal pathogenesis.Molecular Microbiology, 84(2), 383–399. https://doi.org/10.1111/j.1365-2958.2012.08034.x
Kaye, Y., Huang, W., Clowez, S., Saroussi, S., Idoine, A., Sanz-Luque, E. & Grossman, A.R. (2019). The mitochondrialalternative oxidase from Chlamydomonas reinhardtiienables survival in high light. The Journal of BiologicalChemistry, 294(4), 1380–1395. https://doi.org/10.1074/jbc.RA118.004667.
Grover, S. D. & Laties, G. G. (1981). Disulfiram inhibition ofthe alternative respiratory pathway in plant mitochondria.Plant Physiology, 68(2), 393–400. https://doi.org/10.1104/pp.68.2.393
Johnson, K. L. (2019). Turning Up the Heat: The AlternativeOxidase Pathway Drives Thermogenesis in Cycad Cones.Plant Physiology, 180(2), 689–690. DOI:10.1104/pp.19.00443
Juárez, O., Guerra, G., Martínez, F. & Pardo, J. P. (2004).The mitochondrial respiratory chain of Ustilago maydis.Biochimica Et Biophysica Acta, 1658(3), 244–251. https://doi.org/10.1016/j.bbabio.2004.06.005.
Laskowski, R. A. & Swindells, M. B. (2011, October 5).LigPlot+: Multiple Ligand–Protein Interaction Diagramsfor Drug Discovery (world) [Product-review]. ACSPublications; American Chemical Society. https://doi.org/10.1021/ci200227u
Li, Q., Ritzel, R. G., McLean, L. L., McIntosh, L., Ko, T.,Bertrand, H. & Nargang, F. E. (1996). Cloning and analysisof the alternative oxidase gene of Neurospora crassa.Genetics, 142(1), 129–140.
Lin, Z., Wu, J., Jamieson, P. A. & Zhang, C. (2019).Alternative Oxidase Is Involved in the Pathogenicity,Development, and Oxygen Stress Response of Botrytiscinerea. Phytopathology, 109(10), 1679–1688. https://doi.org/10.1094/PHYTO-01-19-0012-R
Martins, V. P., Dinamarco, T. M., Soriani, F. M., Tudella, V.G., Oliveira, S. C., Goldman, G. H., Curti, C. & Uyemura,S. A. (2011). Involvement of an alternative oxidase inoxidative stress and mycelium-to-yeast differentiationin Paracoccidioides brasiliensis. Eukaryot Cell, 10(2),237–248. https://doi.org/10.1128/EC.00194-10
McDonald, A. E., Vanlerberghe, G. C. & Staples, J. F. (2009).Alternative oxidase in animals: Unique characteristicsand taxonomic distribution. J. Exp. Biol., 212(Pt 16),2627–2634. https://doi.org/10.1242/jeb.032151
Medentsev, A. G. & Akimenko, V. K. (1999). Developmentand activation of cyanide-resistant respiration in the yeastYarrowia lipolytica. Biochemistry Biokhimiia, 64(8),945–951.
Menzies, S.K., Tulloch, L.B., Florence, G. J. & Smith, T. K.(2018). The trypanosome alternative oxidase: a potentialdrug target? Parasitology, 145(2), 175-183. DOI: 10.1017/S0031182016002109.
Moore, A. L., Shiba, T., Young, L., Harada, S., Kita, K. & Ito,K. (2013). Unraveling the heater: New insights into thestructure of the alternative oxidase. Annual Review of PlantBiology, 64, 637–663. https://doi.org/10.1146/annurevarplant-042811-105432
Nargang, F. E., Adames, K., Rüb, C., Cheung, S., Easton, N.,Nargang, C. E. & Chae, M. S. (2012). Identification ofgenes required for alternative oxidase production in theNeurospora crassa gene knockout library. G3 (Bethesda,Md.), 2(11), 1345–1356. https://doi.org/10.1534/g3.112.004218
Neimanis, K., Staples, J. F., Huner, N. P. & McDonald, A.E. (2013). Identification, expression, and taxonomicdistribution of alternative oxidases in non-angiospermplants. Gene, 526(2), 275–286. https://doi.org/10.1016/j.gene.2013.04.072
Ordog, S. H., Higgins, V. J. & Vanlerberghe, G. C. (2002).Mitochondrial Alternative Oxidase Is Not a CriticalComponent of Plant Viral Resistance But May Play a Rolein the Hypersensitive Response. Plant Physiology, 129(4),1858–1865. https://doi.org/10.1104/pp.003855
Petrovic, U. (2006). Role of oxidative stress in the extremelysalt-tolerant yeast Hortaea werneckii. FEMS YeastResearch, 6(5), 816–822. https://doi.org/10.1111/j.1567-1364.2006.00063.x
PyMOL | pymol.org. (n.d.). Retrieved March 14, 2022, fromhttps://pymol.org/2/
Qi, Z., Smith, K. M., Bredeweg, E. L., Bosnjak, N., Freitag, M.& Nargang, F. E. (2016). Alternative Oxidase TranscriptionFactors AOD2 and AOD5 of Neurospora crassa Control theExpression of Genes Involved in Energy Production andMetabolism. G3: Genes|Genomes|Genetics, 7(2), 449–466.https://doi.org/10.1534/g3.116.035402
Romero-Aguilar, L., Cárdenas-Monroy, C., Garrido-Bazán, V.,Aguirre, J., Guerra-Sánchez, G. & Pardo, J. P. (2020). Onthe use of n-octyl gallate and salicylhydroxamic acid tostudy the alternative oxidase role. Archives of Biochemistryand Biophysics, 694, 108603. https://doi.org/10.1016/j.abb.2020.108603
Saha, B., Borovskii, G. & Panda, S. K. (2016). Alternativeoxidase and plant stress tolerance. Plant Signaling &Behavior, 11(12), e1256530. https://doi.org/10.1080/15592324.2016.1256530
Saisho, D., Nambara, E., Naito, S., Tsutsumi, N., Hirai, A.& Nakazono, M. (1997). Characterization of the genefamily for alternative oxidase from Arabidopsis thaliana.Plant Molecular Biology, 35(5), 585–596. https://doi.org/10.1023/A:1005818507743.
Shiba, T., Kido, Y., Sakamoto, K., Inaoka, D. K., Tsuge, C.,Tatsumi, R., Takahashi, G., Balogun, E. O., Nara, T., Aoki,T., Honma, T., Tanaka, A., Inoue, M., Matsuoka, S., Saimoto,H., Moore, A. L., Harada, S. & Kita, K. (2013). Structureof the trypanosome cyanide-insensitive alternative oxidase.Proceedings of the National Academy of Sciences of theUnited States of America, 110(12), 4580–4585. https://doi.org/10.1073/pnas.1218386110
Siedow, J. N. (2013). ATP Synthesis: Mitochondrial Cyanide-Resistant Terminal Oxidases. In W. J. Lennarz & M.D. Lane (Eds.), Encyclopedia of Biological Chemistry(Second Edition) (pp. 145–148). Academic Press. https://doi.org/10.1016/B978-0-12-378630-2.00285-1
Tian, F., Lee, S. Y., Woo, S. Y. & Chun, H. S. (2020).Alternative Oxidase: A Potential Target for ControllingAflatoxin Contamination and Propagation of Aspergillusflavus. Frontiers in Microbiology, 11, 419. DOI:10.3389/fmicb.2020.00419
Veiga, A., Arrabaca, J. D. & Loureiro-Dias, M. C. (2000).Cyanide-resistant respiration is frequent, but confinedto yeasts incapable of aerobic fermentation. FEMSMicrobiology Letters, 190(1), 93–97. https://doi.org/10.1111/j.1574-6968.2000.tb09268.x
Veiga, A., Arrabaca, J. D. & Loureiro-Dias, M. C. (2003a). Stresssituations induce cyanide-resistant respiration in spoilageyeasts. Journal of Applied Microbiology, 95(2), 364–371.https://doi.org/10.1046/j.1365-2672.2003.01992.x
Veiga, A., Arrabaca, J. D., Sansonetty, F., Ludovico, P., Corte-Real, M. & Loureiro-Dias, M. C. (2003). Energy conversioncoupled to cyanide-resistant respiration in the yeasts Pichiamembranifaciens and Debaryomyces hansenii. FEMS YeastResearch, 3(2), 141–148. https://doi.org/10.1016/S1567-1356(02)00189-7
West, R. A., Cunningham, T., Pennicott, L. E., Rao, S. P. S. &Ward, S. E. (2018). Toward More Drug Like Inhibitors ofTrypanosome Alternative Oxidase. ACS Infectious Diseases,4(4), 592–604. https://doi.org/10.1021/acsinfecdis.7b00218
Xu, T., Wang, Y.-T., Liang, W.-S., Yao, F., Li, Y.-H., Li,D.-R., Wang, H. & Wang, Z.-Y. (2013). Involvementof alternative oxidase in the regulation of sensitivity ofSclerotinia sclerotiorum to the fungicides azoxystrobin andprocymidone. Journal of Microbiology, 51(3), 352–358.https://doi.org/10.1007/s12275-013-2534-x
Yan, L., Li, M., Cao, Y., Gao, P., Cao, Y., Wang, Y. & Jiang,Y. (2009). The alternative oxidase of Candida albicanscauses reduced fluconazole susceptibility. The Journal ofAntimicrobial Chemotherapy, 64(4), 764–773. https://doi.org/10.1093/jac/dkp273
Zhu, Y., Lu, J., Wang, J., Chen, F., Leng, F. & Li, H. (2011).Regulation of thermogenesis in plants: The interaction ofalternative oxidase and plant uncoupling mitochondrialprotein. Journal of Integrative Plant Biology, 53(1), 7–13.