2023, Número 2
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2023; 25 (2)
Inmunoexpresión de ALDH1A1, FGFR2, CD44 y Caspasa-3 en Carcinoma Oral de Células Escamosas y Leucoplasias: un estudio piloto
Boza Oreamuno YV, Reyes-Carmona JF
Idioma: Ingles.
Referencias bibliográficas: 34
Paginas: 103-111
Archivo PDF: 530.17 Kb.
RESUMEN
La actual evidencia científica enfatiza la importancia de reconocer biomarcadores viables para el diagnóstico y tratamiento temprano del cáncer oral. Nuestro estudio piloto analizó la expresión y distribución espacial de ALDH1A1, FGFR2, caspasa-3 y CD44 en carcinoma oral de células escamosas (COCE) y en leucoplasia con o sin displasia de la mucosa oral. Las muestras incluidas en parafina de COCE (n=5), con (n=5) y sin (n=5) displasia fueron obtenidas mediante biopsias incisionales, las cuales se procesaron utilizando técnicas histoquímicas convencionales. El análisis inmunohistoquímico se realizó utilizando anticuerpos contra ALDH1A1, FGFR2, caspasa-3 y CD44. Las imágenes de las secciones de cada muestra fueron analizadas según la intensidad de inmunoexpresión de cada marcador y se clasificaron en diferentes escalas (scores). Se realizó la prueba de Kruskal-Wallis (valores de p‹0,05). Nuestros resultados demostraron una diferencia estadística en la expresión de todos los inmunomarcadores entre COCE y las muestras con leucoplasia sin displasia, siendo más significativa en FGFR2 y ALDH1A1. Considerando las limitaciones de este estudio, los datos sugieren que la presencia de displasia en la mucosa oral es un importante predictor clínico-patológico de transformación maligna.
REFERENCIAS (EN ESTE ARTÍCULO)
D’souza S., Addepalli V. Preventive measures in oral cancer: An overview. Biomedicine and Pharmacotherapy. 2018; 107 (May): 72-80.
Paré A., Joly A. Cancers de la cavité buccale: facteurs de risque et prise en charge. Presse Medicale. 2017; 46 (3): 320-30.
Ernani V., Saba N.F. Oral cavity cancer: Risk factors, pathology, and management. Oncology (Switzerland). 2015; 89 (4): 187-95.
Wong T.S.C., Wiesenfeld D. Oral Cancer. Australian Dental Journal. 2018; 63 (1): S91-9.
Iocca O., Sollecito T.P., Alawi F., Weinstein G.S., Newman J.G., De Virgilio A., et al. Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head and Neck. 2020; 42 (3): 539-55.
Warnakulasuriya S. Clinical features and presentation of oral potentially malignant disorders. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2018; 125 (6): 582-90.
Warnakulasuriya S. Oral potentially malignant disorders: A comprehensive review on clinical aspects and management. Oral Oncology. 2020; 102 (December 2019): 104550.
Chaturvedi A.K., Udaltsova N., Engels E.A., Katzel J.A., Yanik E.L., Katki H.A., et al. Oral leukoplakia and risk of progression to oral cancer: A population-based cohort study. Journal of the National Cancer Institute. 2020; 112 (10): 1047-54.
Caldeira P.C., María A., Soto L., Martins C.C., Cássia M., Aguiar F. De. Tumor depth of invasion and prognosis of early-stage oral squamous cell carcinoma : A meta - analysis. Oral Dis. 2020; 26 (7): 1357-65.
Abati S., Bramati C., Bondi S., Lissoni A., Trimarchi M. Oral Cancer and Precancer : A Narrative Review on the Relevance of Early Diagnosis. Int J Environ Res Public Health. 2020; 17 (24): 9160.
Warnakulasuriya S., Newell W. Johnson, Van Der Waal I. Nomenclature and classification of potentially malignant disorders of the oral mucosa. J Oral Pathol Med. 2007; 36 (1): 575-80.
Simple M., Suresh A., Das D., Kuriakose M.A. Cancer stem cells and field cancerization of Oral squamous cell carcinoma. Oral Oncology. 2015; 51 (7): 643-51.
Curtius K., Wright N.A., Graham T.A. An evolutionary perspective on field cancerization. Nature Reviews Cancer. 2017; 18 (1): 19-32.
Marangon Junior H., Melo V.V.M., Caixeta Â.B., Souto G.R., Souza P.E.A., de Aguiar M.C.F., et al. Immunolocalization of Cancer Stem Cells Marker ALDH1 and its Association with Tumor Budding in Oral Squamous Cell Carcinoma. Head and Neck Pathology [Internet]. 2019; 13 (4): 535-42. Available from: http://dx.doi.org/10.1007/s12105-018-0985-4
Krishnamurthy S., Dong Z., Vodopyanov D., Imai A., Joseph I., Prince M.E., et al. NIH Public Access. Cancer Res. 2010; 70 (23): 9969-78.
Krishnamurthy S., Nör J.E. Head and neck cancer stem cells. Journal of Dental Research. 2012; 91(4): 334-40.
Nayak S., Goel M.M., Makker A., Bhatia V., Chandra S., Kumar S., et al. Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant oral lesions into oral squamous cell carcinoma. PLoS ONE. 2015;10 (10).
Sasada R., Kurokawa T., Iwane M., Igarashi K. Transformation of mouse BALB/c 3T3 cells with human basic fibroblast growth factor cDNA. Molecular and Cellular Biology. 1988; 8 (2): 588-94.
Min F., Liu X., Li Y., Dong M., Qu Y., Liu W. Carnosic Acid Suppresses the Development of Oral Squamous Cell Carcinoma via Mitochondrial-Mediated Apoptosis. Frontiers in Oncology. 2021; 11 (November): 1-11.
Choo Z., Loh A.H.P., Chen Z.X. Destined to die: Apoptosis and pediatric cancers. Cancers. 2019; 11 (11): 1-21.
Curtius K., Wright N.A., Graham T.A. An evolutionary perspective on field cancerization. Nature Reviews Cancer. 2017; 18 (1): 19-32.
Krishnamurthy S., Nör J.E. Head and neck cancer stem cells. Journal of Dental Research. 2012; 91 (4): 334-40.
Leinung M., Ernst B., Döring C., Wagenblast J., Tahtali A., Diensthuber M., et al. Expression of ALDH1A1 and CD44 in primary head and neck squamous cell carcinoma and their value for carcinogenesis, tumor progression and cancer stem cell identification. Oncology Letters. 2015 Oct 1; 10 (4): 2289-94.
Clay M.R., Tabor M., Owen J.H., Carey T.E., Bradford CR, Wolf GT, et al. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head & neck. 2010 Sep; 32 (9): 1195-201.
Mascolo M., Ilardi G., Romano M.F., Celetti A., Siano M., Romano S., et al. Overexpression of chromatin assembly factor-1 p60, poly(ADP-ribose) polymerase 1 and nestin predicts metastasizing behaviour of oral cancer. Histopathology. 2012 Dec; 61 (6): 1089-105.
Curtarelli R.B., Gonçalves J.M., dos Santos L.G.P., Savi M.G., Nör J.E., Mezzomo L.A.M., et al. Expression of Cancer Stem Cell Biomarkers in Human Head and Neck Carcinomas: a Systematic Review. Stem cell reviews and reports. 2018 Dec; 14 (6): 769-84.
Nayak S., Goel M.M., Makker A., Bhatia V., Chandra S,. Kumar S., et al. Fibroblast growth factor (FGF-2) and its receptors FGFR-2 and FGFR-3 may be putative biomarkers of malignant transformation of potentially malignant oral lesions into oral squamous cell carcinoma. PLoS ONE. 2015 Oct 14; 10 (10).
Wakulich C., Jackson-Boeters L., Daley T.D., Wysocki G.P. Immunohistochemical localization of growth factors fibroblast growth factor-1 and fibroblast growth factor-2 and receptors fibroblast growth factor receptor-2 and fibroblast growth factor receptor-3 innormal oral epithelium, epithelial dysplasias, and squamous cell carcinoma. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2002 May; 93 (5): 573-9.
Haugsten E.M., Wiedlocha A., Olsnes S., Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Molecular cancer research : MCR. 2010 Nov; 8 (11): 1439-52.
Sasada R. Transformation of Mouse BALB/c 3T3 Cells with Human Basic Fibroblast Growth Factor cDNA. Vol. 8, MOLECULAR AND CELLULAR BIOLOGY. 1988.
Li S.X., Chai L., Cai Z.G., Jin L.J., Chen Y., Wu H.R., et al. Expression of survivin and caspase 3 in oral squamous cell carcinoma and peritumoral tissue. Asian Pacific Journal of Cancer Prevention. 2012; 13 (10): 5027-31.
Choo Z., Loh A.H.P., Chen Z.X. Destined to die: Apoptosis and pediatric cancers. Cancers. 2019 Nov 1; 11 (11).
Chen T., Yang I., Irby R., Shain K.H., Wang H.G., Quackenbush J., et al. Regulation of caspase expression and apoptosis by adenomatous polyposis coli. Cancer research. 2003 Aug 1; 63 (15): 4368-74.
Boudreau M.W., Peh J., Hergenrother P.J. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS chemical biology. 2019; 14 (11): 2335-48.