2003, Número 2
<< Anterior Siguiente >>
Gac Med Mex 2003; 139 (2)
Temas selectos de laboratorio e investigación en hematologia
I. Introducción
II. Vías de modulación de la apoptosis
III. Guardianes del Genoma Humano
IV. Estrategias para la investigación de enfermedad residual en leucemia aguda
V. Identificación y cinética de blastos en líquido cefalorraquideo mediante citometría de flujo
VI. Trastorno mieloproliferativo transitorio
VII. Alteraciones Citogenéticas en Síndromes Mielodisplasicos (SMD)
VIII. Hemostasia primaria
IX. Utilidad de las pruebas diagnosticas en la práctica clínica
Romero-Guzmán LT, Monsiváis-Orozco AC, Frías S, Ruiz-Argüelles A, Piedras-Ross J, Arana-Trejo RM, Montiel-Manzano G, Gutiérrez-Castrellón P
Idioma: Español
Referencias bibliográficas: 64
Paginas: 81-101
Archivo PDF: 221.04 Kb.
FRAGMENTO
La Hematología como otras ramas de la Medicina, se ha visto favorecida con la aplicación del diagnóstico de tipo molecular, el laboratorio ha desempeñado un papel fundamental en este proceso a través de la implementación de técnicas moleculares. Desde que se originó la idea de que el material genético está compuesto de ácidos nucleicos, cuando Griffith en 1928 observó el fenómeno de “la transformación” y los estudios de Avery en 1944 demostraron que el principio transformador aislado correspondía químicamente al DNA, hasta el Proyecto del Genoma humano en donde se ha logrado determinar el orden de cerca de 3,200 millones de nucleótidos que forman nuestro genoma, ha aumentado la necesidad de desarrollar y aplicar tecnologías nuevas para realizar análisis detallados de esta nueva información. Han sido de gran utilidad los métodos basados en la reacción en cadena de la polimerasa (PCR), que facilita el diagnóstico molecular debido a que se realiza a partir de cualquier muestra proveniente del sujeto en estudio y solo requiere de una pequeña cantidad de DNA. El diagnóstico molecular puede tener dos posibilidades, la primera es caracterizar la mutación o mutaciones en un gen causante de la enfermedad, mediante el secuenciamiento directo de productos de PCR o con la metodología de los microarreglos. Los microarreglos del DNA es una tecnología que responde a la necesidad de analizar simultáneamente patrones de expresión de cientos o miles de genes y ofrece grandes ventajas sobre las técnicas de escrutinio genético. La segunda posibilidad se realiza mediante la identificación de los alelos de un polimorfismo genético situado muy cerca o en el interior (intrón o exón) del gen causante de la enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Pothana Saikumar, PhD, Zheng Dong, PhD, Valery Mikhailov, et al. Apoptosis: Definition, mechanisms, and Relevance to Disease. The American Journal of Medicine 1999;107: 489-505
Michael O. Hengartner. The biochemistry of apoptosis. Nature 2000 October 12;407: 770-776
Marcel Leist and Masrja Jäättela. Four Deaths and a Funeral: From caspases to alternative mechanisms. Nature Reviews 2001;2:589-598
Steven W Hetts. To die or not to die. An Overview of apoptosis and its Role in Disease. JAMA 1998; 279-4: 300-307
Donald W. Nicholson. From bench to clinic with apoptosis-based therapeutic agents. Nature 2000; 407: 810-816.
Cahil DP, Lengauer C. Tumor genome instability. En: Scriver B, Ed. The metabolic and molecular basis of inherited diseases. McGraw Hill, 8a. Ed. N. Y, 2001. pp 611-612
Friedberg, E. DNA repair. Nature, 421:436-440, 2003.
Joenje H, Patel KJ. The emerging genetic and molecular basis of Fanconi anemia. Nat Rev Genet 2:446-457,2001.
Joeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature 411:366-444, 2001.
Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev 3:155-168, 2003.
Pine SR, Moy FH, Weimels JL, Gill RK, Levendoglu-Tugal O, Ozkaynak MF, Sandoval C, Javabose S. Real-Time Quantitative PCR: Standardized detection of minimal residual disease in pediatric acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2003;25:103-8.
Bjorklund E, Mazur J, Soderhall S, Porwit-MacDonald A. Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia. 2003;17:138-48
Munoz L, Nomdedeu JF, Villamor N, Guardia R, Colomer D, Ribera JM, Torres JP, Berlanga JJ, Fernandez C, Llorente A, Queipo De Llano MP, Sánchez JM, Brunet S, Sierra J. Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia. 2003;17:76-82.
Krampera M, Vitale A, Vincenzi C, Perbellini O, Guarini A, Annino L, Todeschini G, Camera A, Fabbiano F, Fioritoni G, Nobile F, Szydlo R, Mandelli F, Foa R, Pizoolo G. Outcome prediction by immunophenotypic minimal residual disease detection in adult T-cell acute lymphoblastic leukaemia .Br J Haematol. 2003;120:74-9.
Ravindranath Y. Recent advances in pediatric acute lymphoblastic and myeloid leukemia. Curr Opin Oncol. 2003;15:23-35.
Maloum K, Sutton L, Baudet S, Laurent C, Bonnemye P, Magnac C, Merle-Beral H. Novel flow-cytometric analysis based on BCD5+ subpopulations for the evaluation of minimal residual disease in chronic lymphocytic leukaemia. Br J Haematol. 2002;119:970-5.
Orfao A, Schmitz G, Brando B, Ruiz-Argüelles A, Basso G, Braylan R, Rothe G, Lacombe F, Lanza F, Papa S, Lucio P, San Miguel JF. Clinically useful information provided by the flow cytometric immunophenotyping of hematological malignancies: Current status and future directions. Clinical Chemistry 1999; 45: 1708-1717.
Ruiz-Argüelles GJ, Garcés-Eisele J, Ruiz-Argüelles A. Molecular follow-up of patients with promyelocytic leukemia treated with all trans-retinoic acid. Clin Lab Hematol 1998; 20: 173-176.
Orfao A, Ruiz-Argüelles A. General concepts about cell sorting techniques. Clinical Biochem 1996; 29: 5-9.
Ruiz-Argüelles GJ, Garces-Eisele J, Reyes-Nuñez V, Perez-Romano B, Ruiz-Argüelles A, Ramirez-Cisneros FJ, Lopez-Martinez B, Lopez-Tapia D, Rivadeneyra-Espinoza L. Assessment of residual disease in acute leukemia by menas of polymerase chain reaction. Rev Invest Clin (Mex) 2000; 52: 118-124.
Ruiz-Argüelles A, Duque RE, Orfao A. Report on the first Latin American consensus conference for flow cytometric immunophenotyping of leukemia. Cytometry 1998; 34: 39-42
Ruiz-Argüelles A. La citología moderna en el laboratorio de hematología. Gac Med Mex 2002;138:155-159.
San Miguel JF, Orfao A, Ruiz-Argüelles A. Identificación y vigilancia de enfermedad residual mínima en leucemia aguda. En Ruiz-Argúelles GJ y San-Miguel JF (Editores). Actualización en Leucemia. Editorial Médica Panamericana. Ciudad de México. 1996. PP. 65-70.
Mastrangelo R, Poplack D, Bleyer A et al. Report and recommendations of the Rome Workshop concerning poor-prognosis acute lymphoblastic leukemia in children: Biologic bases for staging, stratification, and treatment. Med Pediatr Oncol 1986;14:191-4.
Redner A, Melamed M, Andreef M. Detection of central nervous system relapse in acute leukemia by multiparameter flow cytometry of DNA, RNA, and CALLA. Ann N Y Acad Sci 1986;468:241-55.
Subirá D, Castañon S, Román A. et al. Flow cytometry and the study of central nervous disease in patients with acute leukaemia. Br J Haematol 2001;112:381-4.
Abellán FP, de la Sen ML, Sánchez B, Rivas C, Calatayud R. Flow cytometry and the study of cerebrospinal fluid in leukaemic patients: additional facts. Br J Haematol 2002;116:725.
Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignement for children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:18-24.
Mahmoud HH, Rivera GK, Hancock ML et al. Low leucocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med 1993;329:314-9.
Oreja-Guevara C, Sindern E, Raulf-Heimsoth M, Malin JP. Analysis of lymphocyte subpopulations in cerebrospinal fluid and peripheral blood in patients with multiple sclerosis and inflammatory diseases of the nervous system. Acta Neurol Scand 1998;98:310-3.
Kleine TO, Albrecht J, Zofel P. Flow cytometry of cerebrospinal fluid (CSF) lymphocytes: alterations of blood/CSF ratios of lymphocyate subsets in inflammation disorders of human central nervous system (CNS). Clin Chem Lab Med 1999;37:231-41.
Siebel NL, Sommer A, Miser J. Transient neonatal leukemoid reactions in mosaic trisomy 21. J Pediatr 1984; 104:251-54.
Brissette MD, Duval-Arnould BJ, Gordon BG, Cotelingam JD. Acute megakaryoblastic leukemia following transient myeloproliferative disorder in a patient without Down síndrome. Am J Hematol 1994;47:316-19.
Kurahaschi H, Hara J, Yumura-Yagi Y et al. Monoclonal nature of transient abnormal myelopoiesis in Down´s syndrome. Blood 1991;77:1161-63.
Hayashi Y, Eguchi M, Sugita K, et al. Cytogenetic findings and clinical features in acute leukemia and transient myeloproliferative disorder in Down´s syndrome. Blood 1988;72:15-23.
Girodon F, Favre B, Couillaud G, Carli PM, Parmeland C, Maynadie M. Immunophenotype of transient myeloproliferative disorder in a newborn with trisomy 21. Cytometry 2000; 42:118-22.
Svaldi M, Moroder W, Messner H. et al. Transient myeloproliferative disorder with a CD7+ and CD56+ myeloid/natural killer cell precursor phenotype in a new born. J Pediatr Hematol Oncol 2002;24:394-6.
Karandikar NJ, Aquino DB, McKenna RW, Kroft SH. Transient myeloproliferative disorder and acute myeloid leukemia in Down syndrome. An immunophenotypic analysis. Am J Clin Pathol 2001;116:204-10.
Masey G, Zipursky , Doyle JJ, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): A Pediatric Oncology Group (POG) study. Blood 2002;100:87a.
Gamis AS, Hilden JM. Transient myeloproliferative disorder, a disorder with too few data and many unanswered questions: Does it contain an important piece of the puzzle to understanding hematopoyesis and acute myelogenous leukemia. J Pediatr Hematol Oncol 2002;24:2-5.
Niikawa N, Deng HX, Abe K. et al. Posible mapping of the gene for transient myeloproliferative syndrome at 21q11.2 Human Genetics 1991;561-66.
Taub JW, Ravindranath Y. Down syndrome and transient myeloproliferative disorder: Why is it transient? J Pediatr Hematol Oncol 2002;24:6-8.
Shuetz T, Stone R. Myelodysplastic syndromes. En Molecular Haematology. Provan D, Gribben J. Editors. Blackwell Science Ltd. Oxford; 2000. pp75-83.
Alessandrino E, Amadori S, Cazzola M, Locatell F, Mecucci C, Morra E, Saglio G, Visan G, Tura S. Myelodisplastic síndromes: recent advances. Hematologica 2001; 86:1124-1157.
Ovilla R, Ignacio G, Rubio ME, Arana RM. Myelodisplastic sybdrome (MDS) succesfully treated with a combination of danazol and pentoxifilline. (#4868) Blood 96(suppl 1): 263b, 2000 (abstr).
Anderson J, Gilliland G, List A, de Witte T. Myelodisplastic syndrome. Hematology, ASH Education Program Book; 2000, 296-312.
Washington L, Doherty D, Glassman A, Martins J, Ibrahim S, Lai R. Myeloid disorders with deletion of 5q as the sole karyotypic abnormality: the clinical and pathologic spectrum. Leukemia Lymphoma, 2002; 43:761-765.
Pedersen BJ, Christiansen DH, Andersen MK, Skovby F. Causality of myelodysplasia and acute myeloid leukemia and their genetic abnormalities. Leukemia, 2002. 16:2177-2184
Shuetz T, Stone R. Myelodysplastic syndromes. En Molecular Haematology. Provan D, Gribben J. Editors. Blackwell Science Ltd. Oxford; 2000. pp75-83.
Alessandrino E, Amadori S, Cazzola M, Locatell F, Mecucci C, Morra E, Saglio G, Visan G, Tura S. Myelodisplastic síndromes: recent advances. Hematologica 2001; 86:1124-1157.
Ovilla R, Ignacio G, Rubio ME, Arana RM. Myelodisplastic sybdrome (MDS) succesfully treated with a combination of danazol and pentoxifilline. (#4868) Blood 96(suppl 1): 263b, 2000 (abstr).
Anderson J, Gilliland G, List A, de Witte T. Myelodisplastic syndrome. Hematology, ASH Education Program Book; 2000, 296-312.
Washington L, Doherty D, Glassman A, Martins J, Ibrahim S, Lai R. Myeloid disorders with deletion of 5q as the sole karyotypic abnormality: the clinical and pathologic spectrum. Leukemia Lymphoma, 2002; 43:761-765.
Pedersen BJ, Christiansen DH, Andersen MK, Skovby F. Causality of myelodysplasia and acute myeloid leukemia and their genetic abnormalities. Leukemia, 2002. 16:2177-2184.
Bithell TC. The physiology of primary hemostasis. En Wintrobe’s Clinical Hematology. 9a ed. Lee GA, et al. Philadelphia. 1993.
Batlie Fonrodona J, López Fernández MF. Enfermedad de von Willebrand. Congénita y adquirida. En: Enciclopedia Iberoamericana de hemostasia y trombosis. España, 1992.
Ruíz Argüelles GJ, Ruiz Reyes G. Interpretación de la citometría hemática. En: Ruiz Argüelles GJ. Fundamentos de Hematología. Editorial panamericana, 2001.
Carol M. Ingerman-Wojenski. Simultaneous measurement of platelet aggregation and the release reaction in platelet-rich plasma and in whole blood. Journal of Medical Technology. 1984;1:697-701.
Feinman RD, Lubowsky J, Caro IF, et al. The lumi-aggregometer: A new instrument for simultaneous measurement of secretion and aggregation. J Lab Clin Med. 1977;90:125-9.
Peter C. Johnson, J. Anthony Ware, Paul B. Cliveden, Marianne Smith, Ann M. Dvorak, and Edwin W. Salzman. Measurement of ionized calcium in blood platelets with the photoprotein aequorin. The Journal of Biological Chemistry. 1985;260:2069-76.
Douglas A, Triplett MD. Laboratory Diagnosis of von Willebrand’s disease. Mayo Clin Proc. 1991;66:832-40.
Ulrich Budde, Elke Drewke, Kerstin Mainusch, Reinhard Schneppenheim. Laboratory diagnosis of congenital von Willebrand disease. Semin Thromb Hemost. 2002;28:173- 89.
P.M. Mannucci and A. Tripodi. Factor VIII clotting activity. En: Laboratory Techniques in Trombosis – a Manual 1999, 107-13.
Budde U, Schneppenheim R, Plendl H, et al. Luminographic detection of von Willebrand factor multimers in agarose gels and on nitrocellulose membranes. Throm Haemost. 1990;63:312-315.