2021, Número 4
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2021; 37 (4)
Síndrome de Evans y desregulación inmune: complejidades moleculares y etiopatogénicas
Soler NG, Escalona MLZ
Idioma: Español
Referencias bibliográficas: 75
Paginas: 1-26
Archivo PDF: 534.70 Kb.
RESUMEN
Introducción:
El síndrome de Evans se define como la presencia de citopenias inmunes que afectan dos o más líneas celulares simultánea o secuencialmente. Generalmente se refiere a la combinación de anemia hemolítica autoinmune con trombocitopenia inmune primaria, pero puede incluir también neutropenia autoinmune. Su etiología se atribuye a la producción de autoanticuerpos patológicos contra las células sanguíneas pero su causa real se desconoce.
Objetivo:
Explicar la relación del síndrome de Evans con la desregulación del sistema inmune.
Método:
Se realizó una revisión de la literatura en inglés y español a través del sitio web PubMed y el motor de búsqueda Google académico, de artículos publicados sobre el tema. El 69,73 % correspondieron a los últimos 5 años.
Conclusiones:
La inmunopatología del síndrome de Evans se puede atribuir a una alteración en el desarrollo o la función de los linfocitos, de manera que el equilibrio inmunológico se inclina hacia la autorreactividad.
REFERENCIAS (EN ESTE ARTÍCULO)
Al Ghaithi I, Wright NAM, Breakey VR, Cox K, Warias A, Wong T, et al. Combined autoimmune cytopenias presenting in childhood. Pediatr Blood Cancer. 2016;63:292-8. DOI: https://:10.1002/pbc.25769
Mantadakis E, Farmaki E. Natural history, pathogenesis, and treatment of Evans syndrome in children. J Pediatr Hematol Oncol. 2017;39:413-9. DOI: https://:10.1097/MPH.0000000000000897
Michel M, Chanet V, Dechartres A, Morin AS, Piette JC, Cirasino L, et al. The spectrum of Evans syndrome in adults: new insight into the disease based on the analysis of 68 cases. Blood. 2009;114(15):3167-72. DOI: https://:10.1182/blood-2009-04-215368
Sipurzynski J, Fahrner B, Kerbl R, Crazzolara R, Jones N, Ebetsberger G, et al. Management of chronic immune thrombocytopenia in children and adolescents: lessons from an Austrian national cross-sectional study of 81 patients. Semin Hematol. 2016;53:S43-S47. DOI: https://:10.1053/j.seminhematol.2016.04.013
Yong M, Schoonen WM, Li L, Kanas G, Coalson J, Mowat F, et al. Epidemiology of paediatric immune thrombocytopenia in the General Practice Research Database. Br J Haematol. 2010;149(6):855-64. DOI: https://:10.1111/j.1365-2141.2010.08176.x
Aladjidi N, Jutand MA, Beaubois C, Fernandes H, Jeanpetit J, Coureau G, et al. Reliable assessment of the incidence of childhood autoimmune hemolytic anemia. Pediatr Blood Cancer. 2017;64:e26683. DOI: https://:10.1002/pbc.26683
Olmsted T, Despotovic JM. Primary and Secondary Immune Cytopenias: Evaluation and Treatment Approach in Children. Hematol Oncol Clin N Am. 2019;33:489-506. DOI: https://10.1016/j.hoc.2019.01.005
Hadjadj J, Aladjidi N, Fernandes H, Leverger G, Magerus-Chatinet A, Mazerolles F, et al. Pediatric Evans syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood. 2019;134(1):9-21. DOI: https://10.1182/blood-2018-11-887141
Sipurzynski J, Fahrner B, Kerbl R, Crazzolara R, Jones N, Ebetsberger G, et al. Management of chronic immune thrombocytopenia in children and adolescents: lessons from an Austrian national cross-sectional study of 81 patients. Semin Hematol. 2016;53(S1):S43-7. DOI: https://:10.1053/j.seminhematol.2016.04.013
Norton A, Roberts I. Management of Evans syndrome. B J Haematol. 2006;132: 125-137. DOI: https://:10.1111/j.1365-2141.2005.05809.x
Aladjidi N, Leverger G, Leblanc T, Quitterie Picat M, Michel G, Bertrand Y, et al. New insights into childhood autoimmune hemolytic anemia: a French national observational study of 265 children. Haematologica. 2011;96(5):655-63. DOI: https://:10.3324/haematol.2010.036053
Bride K, Teachey D. Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Res. 2017;6:1928.DOI: https://:10.12688/f1000research.11545.1
Schmidt RE, Grimbacher B, Witte T. Autoimmunity and primary immunodeficiency: two sides of the same coin? Nat Rev Rheumatol. 2018;14(1):7-18. DOI: https://:10.1038/nrrheum.2017.198
Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract. 2019;7(6):17631-70. DOI: https://:10.1016/j.jaip.2019.02.004
NijmanI J, van Montfrans JM, Hoogstraat M, Boes ML, van de Corput L, Renner ED, et al. Targeted next-generation sequencing: a novel diagnostic tool for primary immunodeficiencies. J Allergy Clin Immunol. 2014;133(2):529-34. DOI: https://:10.1016/j.jaci.2013.08.032
Li E, Grimes AB, Rider NL, Mahoney DH, Fleisher TA, Shearer WT. Diagnostic dilemma: ALPS versus Evans syndrome. Clin Immunol. 2017;183:247-8. DOI: https://:10.1016/j.clim.2017.08.006
Zhang L, Wu X, Wang L, Li J, Chen H, Zhao Y, et al. Clinical features of systemic lupus erythematosus patients complicated with Evans syndrome: a case-control, single center study. Medicine (Baltimore). 2016;95(15):e3279. DOI: https://:10.1097/MD.0000000000003279
Patel B P, Jakob J. A Rare Case of Simultaneous Evans Syndrome and Primary Antiphospholipid Syndrome. Cureus. 2020;12(2): e6845. DOI: https://:10.7759/cureus.6845
Matson DR, Yang DT. Autoimmune Lymphoproliferative Syndrome: An Overview. Arch Pathol Lab Med. 2020;144:245-51; DOI: https://:10.5858/arpa.2018-0190-RS
Xie Y, Pittaluga S, Price S, Raffeld M, Hahn J, Jaffe ES, et al. Bone marrow findings in autoimmune lymphoproliferative syndrome with germline FAS mutation. Haematologica. 2017;102(2):364-72. DOI: https://:10.3324/haematol.2015.138081
Seif AE, Manno CS, Sheen C, Grupp SA, Teachey DT. Identifying autoimmune lymphoproliferative syndrome in children with Evans syndrome: a multi-institutional study. Blood. 2010;115(11):2142-5. DOI: https://:10.1182/blood-2009-08-239525
Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35-40. DOI: https://:10.1182/blood-2010-04-280347
Ho HE, Cunningham-Rundles C. Non-infectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol. 2020;11:149. DOI: https://:10.3389/fimmu.2020.00149
Feuille EJ, Anooshiravani N, Sullivan KE, Fuleihan RL, Cunningham-Rundles C. Autoimmune cytopenias and associated conditions in CVID: a report from the USIDNET Registry. J Clin Immunol. 2017;38(1):28-34. DOI: https://:10.1007/s10875-017-0456-9.
Lube GE, Ferriani MP, Campos LM, Terreri MT, Bonfá E, Saad C, et al. Evans syndrome at childhood-onset systemic lupus erythematosus diagnosis: a large multicenter study. Pediatr Blood Cancer. 2016;63(7):1238-43. DOI: https://:10.1002/pbc.25976
Burnett DL, Langley DB, Schofield P, Hermes JR, Chan TD, Jackson J, et al. Germinal center antibody mutation trajectories are determined by rapid self/foreign discrimination. Science. 2018;360(6385):223-6. DOI: https://:10.1126/science.aao3859
Warnatz K, Wehr C, Dräger R, Schmidt S, Eibel H, Schlesier M, et al. Expansion of CD19(hi)CD21(lo/neg) B cells in common variable immunodeficiency (CVID) patients with autoimmune cytopenia. Immunobiology. 2002;206(5):502-13. DOI: https://:10.1078/0171-2985-00198
Romberg N, Le Coz C, Glauzy S, Schickel JN, TrofaBA M, Nolan BE, et al. Patients with common variable immunodeficiency with autoimmune cytopenias exhibit hyperplastic yet inefficient germinal center responses. J Allergy Clin Immunol. 2019;143:258 e265. DOI: https://:10.1016/j.jaci.2018.06.012
Kuwana M, Okazaki Y, Kajihara M, Kaburaki J, Miyazaki H, Kawakami Y, et al. Autoantibody to c-Mpl (thrombopoietin receptor) in systemic lupus erythematosus: relationship to thrombocytopenia with megakaryocytic hypoplasia. Arthritis Rheum. 2002;46:2148-59. DOI: https://:10.1002/art.10420
Cines DB, Liebman H, Stasi R. Pathobiology of secondary immune thrombocytopenia. Semin Hematol. 2009;46(1Suppl2):S2-14. DOI: https://:10.1053/j.seminhematol.2008.12.005
Nakamura M, Tanaka Y, Satoh T, Kawai M, Hirakata M, Kaburaki J, et al. Autoantibody to CD40 ligand in systemic lupus erythematosus: association with thrombocytopenia but not thromboembolism. Rheumatology (Oxford). 2006;45(2):150-6. DOI: https://:10.1093/rheumatology/kei118
Liu Y, Chen S, Sun Y, Lin Q, Liao X, Zhang J, et al. Clinical characteristics of immune thrombocytopenia associated with autoimmune disease: a retrospective study. Medicine (Baltimore). 2016;95(50):e5565. DOI: https://:10.1097/MD.0000000000005565
Molnár E, Radwan N, Kovács G, Andrikovics H, Henriquez F, Zarafov A, et al. Key diagnostic markers for Autoimmune Lymphoproliferative Syndrome with molecular genetic diagnosis. Blood blood.2020005486. DOI: https://:10.1182/blood.2020005486
Takagi M, Hoshino A, Yoshida K, Ueno H, Imai K, Piao J, et al. Genetic heterogeneity of uncharacterized childhood autoimmune diseases with lymphoproliferation. Pediatr Blood Cancer. 2018; 65:e26831. DOI: https://:10.1002/pbc.26831
Li P, Huang P, Yang Y, Hao M, Peng H, Li F. Updated Understanding of Autoimmune Lymphoproliferative Syndrome (ALPS). Clinic Rev Allerg Immunol. DOI: https://:10.1007/s12016-015-8466-y
Kuehn HS, Caminha I, Niemela JE, Rao VK, Davis J, Fleisher TA, et al. FAS haploinsuficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. J Immunol. 2011;186(10):6035-43. DOI: https://:10.4049/jimmunol.1100021
Magerus-Chatinet A, Neven B, Stolzenberg MC, Daussy C, Arkwright PD, Lanzarotti N, et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J Clin Invest. 2011;121(1):106-12. DOI: https://: 10.1172/JCI43752
Boggio E, Gigliotti CL, Rossi D, Toffoletti E, Cappellano G, Clemente N, et al. Decreased function of Fas and variations of the perforin gene in adult patients with primary immune thrombocytopenia. B J Haematol. 2017;176:258-67. DOI: https://: 10.1111/bjh.14248
van Schouwenburg PA, IJspeert H, Pico-Knijnenburg I, Dalm VASH, van Hagen PM, van Zessen D, et al. Identification of CVID Patients With Defects in Immune Repertoire Formation or Specification. Front Immunol. 2018;9:2545. DOI: https://: 10.3389/fimmu.2018.02545
Odnoletkova I, Kindle G, Quinti I, Grimbacher B, Knerr V, Gathmann B, et al. The burden of common variable immunodeficiency disorders: a retrospective analysis of the European Society for Immunodeficiency (ESID) registry data. Orphanet J Rare Dis. 2018;13(1):201. DOI: https://:10.1186/s13023-018-0941-0
Yazdani R, Seify R, Ganjalikhani-Hakemi M, Abolhassani H, Eskandari N, Golsaz-Shirazi F, et al. Comparison of various classifications for patients with common variable immunodeficiency (CVID) using measurement of B-cell subsets. Allergol Immunopathol (Madr). 2017;45(2):183-92. DOI: https://:10.1016/j.aller.2016.07.001
Meffre E. The establishment of early B cell tolerance in humans: lessons from primary immunodeiciency diseases. Ann N Y Acad Sci. 2011;1246:1-10. DOI: https://:10.1111/j.1749-6632.2011.06347.x
Yazdani R, Habibi S, Sharifi L, Azizi G, Abolhassani H, Olbrich P, et al. Common variable immunodeficiency: epidemiology, pathogenesis, clinical manifestations, diagnosis, classification and management. J Investig Allergol Clin Immunol. 2020;30(1):14-34. DOI: https://:10.18176/jiaci.0388.
Takagi M, Ogata S, Ueno H, Yoshida L, Yeh T, Hoshino A, et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin I mmunol. 2017;139(6):1914-22. DOI: https://:10.1016/j.jaci.2016.09.038
Yakaboski E, Fuleihan RL, Sullivan KE, Cunningham-Rundles C, Feuille E. Lymphoproliferative Disease in CVID: A Report of Types and Frequencies from a US Patient Registry. J Clin Immunol. 2020;40(3):524-30. DOI: https://:10.1007/s10875-020-00769-8.
Oliveira JB, Bidère N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 2007;104(21):8953-8. DOI: https://:10.1073/pnas.0702975104.
Niemela J, Lu L, Fleisher TA, Davis J, Caminha I, Natter M, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117:2883-6. DOI: https://:10.1182/blood-2010-07-295501.
Chun HJ, Zheng I, Ahmad M, Wang J, Speirs CK, Siegel RM, et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeiciency. Nature. 2002;419(6905):395-9. DOI: https://:10.1038/nature01063.
Shiota M, Yang X, Kubokawa M, Morishima T, Tanaka K, Mikami M, et al. Somatic mosaicism for a NRAS mutation associates with disparate clinical features in RAS-associated leukoproliferative disease: a report of two cases. J Clin Immunol. 2015;35(5):454-8. DOI: https://:10.1007/s10875-015-0163-3
Niemela J, Lu L, Fleisher TA, Davis J, Caminha I, Natter M, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117:2883-6. DOI: https://:10.1182/blood-2010-07-295501
Kucuk ZY, Charbonnier LM, McMasters RL, Chatila T, Bleesing JJ. CTLA-4 haploinsuficiency in a patient with an autoimmune lymphoproliferative disorder. J Allergy Clin Immunol. 2017;140(3):862-4. DOI: https://:10.1016/j.jaci.2017.02.032
Gámez-Díaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223-30. DOI: https://: 10.1016/j.jaci.2015.09.025.
Kostel Bal S, Haskologlu S, Serwas NK, Islamoglu C, Aytekin C, Kendirli T, et al. Multiple presentations of LRBA deficiency: a single-center experience. J Clin Immunol. 2017;37(8):790-800. DOI: https://:10.1007/s10875-017-0446-y.
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase d syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597-606. DOI: https://: 10.1016/j.jaci.2016.06.021.
Consonni F, Dotta L, Todaro F, Vairo D, Badolato R. Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr. 2017;29(6):711-7. DOI: https://: 10.1097/MOP.0000000000000551.
Schwab C, Gabrysch A, Olbrich P, Patiño V, Warnatz K, Wolff D, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects. J Allergy Clin Immunol. 2018;142(6):1932-46. DOI: https://: 10.1016/j.jaci.2018.02.055.
Lo B, Fritz JM, Su HC, Uzel G, Jordan MB, Lenardo MJ. CHAI and LATAIE: new genetic diseases of CTLA-4 checkpoint insufficiency. Blood. 2016;128:1037-42. DOI: https://10.1182/blood-2016-04-712612 .
Lévy E, Stolzenberg MC, Bruneau J, Breton S, Neven B, Sauvion S, et al. LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clin Immunol. 2016;168:88-93. DOI: https://:10.1016/j.clim.2016.03.006.
Azizi G, Abolhassani H, Zaki-Dizaji M, Habibi S, Mohammadi H, Shaghaghi M, et al. Polyautoimmunity in patients with LPS-responsive beige-like anchor (LRBA) deficiency. Immunol Investig. 2018;47(5):457-67. DOI: https://: 10.1080/08820139.2018.1446978.
Besnard C, Levy E, Aladjidi N, Stolzenberg MC, Magerus-Chatinet A, Alibeu O, et al. Pediatric-onset Evans syndrome: Heterogeneous presentation and high frequency of monogenic disorders including LRBA and CTLA4 mutations. Clin Immunol. 2018;188:52-57. DOI: https://:10.1016/j.clim.2017.12.009
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase d syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597-606.e4. DOI: https://: 10.1016/j.jaci.2016.06.021.
Volkl S, Rensing-Ehl A, Allgauer A, Schreiner E, Lorenz MR, Rohr J, et al. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood. 2016;128(2):227-38. DOI: https://:10.1182/blood-2015-11-685024.
Preite S, Gomez-Rodriguez J, Cannons JL, Schwartzberg PL. T and B-cell signaling in activated PI3K delta syndrome: From immunodeficiency to autoimmunity. Immunol Rev. 2019;291(1):154-73. DOI: https://:10.1111/imr.12790.
Klemann C, Esquivel M, Magerus-Chatinet A, Lorenz MR, Fuchs I, Neveux N, et al. Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica. 2017;102(2):e52-e56. DOI: https://:10.3324/haematol.2016.153411.
Thauland TJ, Pellerin L, Ohgami RS, Bacchetta R, Butte MJ. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753. DOI: https://10.3389/fimmu.2019.00753.
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase d syndrome: a large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597-606. DOI: https://10.1016/j.jaci.2016.06.021.
Consonni F, Dotta L, Todaro F, Vairo D, Badolato R. Signal transducer and activator of transcription gain-of-function primary immunodeficiency/immunodysregulation disorders. Curr Opin Pediatr. 2017;29(6):711-7. DOI: https://10.1097/MOP.0000000000000551.
Weinacht KG, Charbonnier LM, Alrogi F, Plant A, Qiao Q, Wu H, et al. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J Allergy Clin Immunol. 2017;139(5):1629-40. DOI: https://10.1016/j.jaci.2016.11.022.
Forbes LR, Milner J, Haddad E. Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol. 2016;23(1):23-7. DOI: https://10.1097/MOH.0000000000000206.
Nabhani S, Schipp C, Miskin H, Levin C, Postovsky S, Dujovny T, et al. STAT3 gain-of-function mutations associated with autoimmune lymphoproliferative syndrome like disease deregulate lymphocyte apoptosis and can be targeted by BH3 mimetic compounds. Clin Immunol. 2017;181:32-42. DOI: https://10.1016/j.clim.2017.05.021.
Schafiq N, Schipp C, Miskin H, Levin C, Postovsky S, Dujovny T, et al. STAT3 gain-of-function mutations associated with autoimmune lymphoproliferative syndrome like disease deregulate lymphocyte apoptosis and can be targeted by BH3 mimetic compounds. Clin Immunol. 2017; 181:32-42. DOI: https://10.1016/j.clim.2017.05.021
Yakaboski E, Fuleihan RL, Sullivan KE, Cunningham-Rundles C, Feuille E. Lymphoproliferative Disease in CVID: A Report of Types and Frequencies from a US Patient Registry. J Clin Immunol. 2020; 40(3):524-30. DOI: https://10.1007/s10875-020-00769-8.
Bleesing JJ, Brown MR, Straus SE, Dale JK, Siegel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98(8):2466-73. DOI: https://10.1182/blood.v98.8.2466.
Caminha I, Fleisher TA, Hornung RL, Dale JK, Niemela JE, Price S, et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2010;125(4):946-9. DOI: https://10.1016/j.jaci.2009.12.983.
Maglione PJ. Autoimmune and lymphoproliferative complications of common variable immunodeiciency. Curr Allergy Asthma Rep. 2016;16(3):19. DOI: https://10.1007/s11882-016-0597-6