2006, Número 6
Biología molecular de los vectores adenovirales
Martínez F, Jiménez OFA, Villegas CH
Idioma: Español
Referencias bibliográficas: 50
Paginas: 483-493
Archivo PDF: 212.35 Kb.
RESUMEN
La terapia con genes postula el uso terapéutico del DNA como una nueva alternativa de la biomedicina para el tratamiento de las enfermedades humanas. Todas las proteínas están codificadas en el DNA, y muchas enfermedades resultan de: a) la ausencia o expresión aberrante de uno o más genes; b) la ausencia de formas funcionales; c) alteraciones en su proceso de regulación, transporte o degradación. Por lo tanto, tales enfermedades pueden ser potencialmente tratadas, restableciendo la expresión de la proteína involucrada en las células afectadas. Sin embargo, para lograr una transferencia exitosa del material genético al sitio blanco y evitar la destrucción del DNA o del vehículo seleccionado antes de llegar al sitio de interés, se han desarrollado varios sistemas virales. Entre los virus más conocidos están: el virus del herpes simple, adenovirus tipo 5, virus adenoasociado y algunos retrovirus complejos (lentivirus). En este artículo se exponen las características biológicas, la manipulación genética y propiedades de los adenovirus, así como su empleo en la medicina actual como vectores para transferir genes y su potencial implicación en la terapia génica
REFERENCIAS (EN ESTE ARTÍCULO)
Budker V, Zhang G, Danko I, Williams P, Wolff J. The efficient expression of intravascular delivered DNA in rat muscle. Gene Ther 1998;5:272-276.
2. Alio SF. Long term expression of the human alpha1 antitrypsin gene in mice employing anionic and cationic liposome vector. Biochem Pharmacol 1997;54:9-13.
3. Ueno NT, Bartholomeusz C, Xia W, Anklesaria P, et al. Systemic gene therapy in human xenograft tumor models by liposomal delivery of the E1A. Gen Cancer Res 2002;62:6712-6716.
4. Thirion C, Laroche N, Volpers C, et al. Strategies for muscle specific targeting of adenoviral gene transfer vectors. Neuromusc Disord 2002;Suppl 1:S30-39.
5. Chao H, Walsh CE. AAV vectors for hemophilia B gene therapy. Mt Sinai J Med 2004;5:305-313.
6. Andreansky S, He B, Gillespie GY, et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci USA 1995;93:11313-11318.
7. MacKenzie MJ. Molecular therapy in pancreatic adenocarcinoma. Lancet Oncol 2004;9:541-549.
8. Graham FL, Smiley J, Russell WL, Nairn R. Characterization of a human cell line transformation by DNA from adenovirus 5. Gen Virol 1995;36:59-72.
9. Kim S, Lin H, Barr E, Chu, L, Leiden JM, Parmacek MS. Transcriptional targeting of replication-defective adenovirus transgene expression to smooth muscle cells in vivo. J Clin Invest 1997;100: 1006-1014.
10. Alemany R, Lai S, Lou YC, Jan HY, Fang X, Zhang WW. Complementary adenoviral vectors for oncolysis. Cancer Gene Ther 1999;1:21-25.
11. Gómez-Navarro J, Curiel DT. Conditionally replicative adenoviral vectors for cancer gene therapy. Lancet Oncol 2000;1:148-158.
12. Rancourt C, Piche A, Gomez-Navarro J, et al. Interleukin-6 modulated conditionally replicative adenovirus as an antitumor/cytotoxic agent for cancer therapy. Clin Cancer Res 1999;5:43-50.
13. Zhu ZB, Chen Y, Makhija SK, Lu B, Wang M, Rivera AA, et al. Survivin promoter-based conditionally replicative adenoviruses target cholangiocarcinoma. Int J Oncol 2006;29:1319-1329.
14. Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Ther 2004;4:616-629.
15. Kommareddy S, Tiwari SB, Amiji MM. Long circulating polymeric nanovectors for tumor-selective gene delivery. Technol Cancer Res Treat 2005;4:6:615-625.
16. Kang HC, Lee M, Bae HY. Polymeric gene carriers. Crit Rev Eukaryot Gene Exp 2005;15:317-342.
17. Rowe WP, Huebner RJ, Gilmore LK, Parrot RH, Ward TG. Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 1953;3:570-573.
18. Chroboczek J, Bieber F, Jacrot B. The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 1992;1:280-285.
19. Bergelson, JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for coxsackie virus B viruses and adenoviruses 2 and 5. Science 1997;275:1320-1323.
20. Wickham TJ. Carrion ME, Kovesdi I. Targeting of adenovirus penton base to new receptors through replacement of its RGD motif with other receptor-specific peptide motifs. Gene Ther 1995;10:750-756.
21. Hong S, Karayan L, Tournier J, Curiel DT, Boulanger PA. Adenovirus type 5 fiber knob binds to MHC class I a2 domain at the surface of human epithelial and B lymphoblastiod cells. EMBO J 1997;16:2294-2306.
22. Van Ormondt H, Maat J, van Beveren CP. The nucleotide sequence of the transforming early region E1 of adenovirus type 5 DNA. Gene 1980;3-4:299-309.
23. Aronheim A, Shiran R, Rosen A, Walker MD. The E2A gene product contains two separable and functionally distinct transcription activation domains. Proc Natl Acad Sci USA 1993;17:8063-8067.
24. Stewart AR, Tollefson AE, Krajcsi P, Yei SP, Wold WS. The adenovirus E3 10.4K and 14.5K proteins, which function to prevent cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor, are localized in the plasma membrane. J Virol 1995;69:172-181.
25. Kaplan JM, Armentano D, Scaria A, et al. Novel role for E4 region genes in protection of adenovirus vectors from lysis by cytotoxic T lymphocytes. J Virol 1999;73:4489-4492.
26. Kreppel F, Kochanek S. Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors. J Virol 2004;78:9-22.
27. Perricaudet M. Molecular biology of the transforming region of human type 5 adenovirus. Biochimie 1983;65:III-VI.
28. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998;95:2509-2514.
29. Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977;36:59-74.
30. Fallaux FJ, Kranenburg O, Cramer SJ, et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 1996;7:215-222.
31. Dmitriev I, Krasnykh V, Miller CR, et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998;72:9706-9713.
32. Van Beusechem VW, van Rijswijk AL, van Es HH, Haisma HJ, Pinedo HM, Gerritsen WR. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 2000;7:1940-1946.
33. Douglas JT, Miller CR, Kim M, et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat Biotech 1999;17:470-475.
34. Li ZB, Zeng ZJ, Chen Q, Luo SQ, Hu WX. Recombinant AAV-mediated HSVtk gene transfer with direct intratumoral injections and Tet-On regulation for implanted human breast cancer. BMC Cancer 2006;6:66.
35. Reid TR, Freeman S, Post L,McCormick F, Sze DY. Effects of Onyx-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther 2005;8:673-681.
36. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997;3:639-645.
37. Liu X, Gu J, Shi W. Targeting gene-virotherapy for cancer. ABBS 2005;37:581-587.
38. Seok K, Engler J, Joung I. Enhancement of gene delivery to cancer cells by a retargeted adenovirus. J Microbiol 2005;43:179-182.
39. Heideman D, Steenbergen R, van der Torre J, et al. Oncolytic adenovirus expressing a p53 variant resistant to degradation by HPV E6 protein exhibits and selective replication in cervical cancer. Mol Ther 2005;12:1083-1090.
40. Boucher P, Shewach D. In vitro and in vivo enhancement of ganciclovir-mediated bystander cytotoxicity with gemcitabine. Mol Ther 2005;12:1064-1071.
41. Bessis N, Garcia Cozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 2004;11:Suppl 1:S10-17.
42. Hodges B, Taylor K, Chu Q, et al. Local delivery of a viral vector mitigates neutralization by antiviral antibodies and results in efficient transduction of rabbit liver. Mol Ther 2005;12:1043-1051.
43. Yang Y, Wilson JM. Clearance of adenovirus-infected hepatocytes by MHC class I restricted CD4+ CTLs in vivo. J Immunol 1995;155: 2564-2569.
44. Lin T, Gu J, Zhang L, et al. Enhancing adenovirus-mediated gene transfer in vitro and in vivo by addition of protamine and hydrocortisone. J Gene Med 2003;5:868-875.
45. Eto Y, Gao JQ, Sekiguchi F, Kurachi S, Katayama K, Maeda M, et al. PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability. J Gene Med 2005;7:604-612.
46. Rocha CD, Caetano BC, Machado AV. Recombinant viruses as tools to induce protective cellular immunity against infectious diseases. Int Microbiol 2004;7:83-94.
47. Lemckert AA, Sumida SM, Holterman L,Vogels R, Truit DM, Linch DM, et al. Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J Virol 2005;79:9694-9701.
48. Basak SK, Kiertscher SM, Harui A, Roth MD. Modifying adenoviral vectors for use as gene-based cancer vaccines. Viral Immunol 2004:17:182-196.
49. Nadeau I, Kamen A. Production of adenovirus vector for gene therapy. Biotech Adv 2003;20:475-478.
50. Zhou D, Ertl HC. Therapeutic potential of adenovirus as a vaccine vector for chronic virus infections. Exp Opin Biol Ther 2006;6:63-72.