2021, Número 3
<< Anterior Siguiente >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2021; 32 (3)
Descripción y análisis de las cadenas de contagio de COVID-19 a partir de las ontologías
Silega MN, Varén CE, Varén ÁA, Rodríguez GI
Idioma: Español
Referencias bibliográficas: 24
Paginas: 1-21
Archivo PDF: 1378.38 Kb.
RESUMEN
La COVID-19 es una enfermedad causada por el virus SARS-COV2, la cual ha provocado la muerte de miles de personas en todo el mundo. La alta transmisibilidad es uno de los factores que dificulta considerablemente su contención. El análisis de las cadenas de contagio podría ofrecer elementos de interés, tanto para los estudios virológicos como epidemiológicos. Por otra parte, las ontologías se han convertido en una tecnología ampliamente aceptada para la representación del conocimiento y su correspondiente análisis. En ese sentido, el objetivo de este trabajo fue presentar un modelo ontológico para la representación y el análisis de las cadenas de contagio por COVID-19. La ontología fue desarrollada con el lenguaje OWL (Web Ontology Language), el cual es un lenguaje formal basado en lógicas descriptivas. Por lo tanto, esta propuesta podría ayudar a inferir conocimiento sobre las cadenas de contagios y así contribuir a la lucha que lleva a efecto la comunidad científica contra la COVID-19. La adopción de esta propuesta contribuirá a agilizar el análisis de las cadenas de contagio, así como a profundizar en la búsqueda de rasgos que pudieran pasar inadvertidos utilizando otros enfoques.
REFERENCIAS (EN ESTE ARTÍCULO)
Guerrero-Sosa J, Menéndez-Domínguez V, Castellanos-Bolanos M, et al. Use of an ontological model to assess the relevance of scientific production. IEEE Latin America transactions; 2019 [16/02/2020];17(9). Disponible en: Disponible en: https://ieeexplore.ieee.org/abstract/document/8931135
Xinga X, Zhonga B, Luoa H, Lic H, Wua H. Ontology for safety risk identification in metro construction. Computers in Industry. 2019 [16/02/2020];109:14-30. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S016636151830397X
Silega N, Noguera M, Macías D. Ontology-based Transformation from CIM to PIM. IEEE Latin America Transactions; 2016 [16/02/2020];14(9):4156-65. Disponible en: Disponible en: https://ieeexplore.ieee.org/abstract/document/7785947
Yanga L, Cormicana K, Yub M. Ontology-based systems engineering: A state-of-the-art review. Computers in Industry. 2019;111:148-71. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0166361518307887
Vences Nava R, Menéndez Domínguez VH, Gómez Montalvo J. A document recommendation system using a document-similarity ontology. IEEE Latin America Transactions; 2016 [16/02/2020];14(7):3329-34. Disponible en: Disponible en: https://ieeexplore.ieee.org/abstract/document/7587638
González Guitián MV, Molina MP, Ponjuán Dante G. Metodología integradora de la auditoría de la información y el conocimiento para organizaciones. Rev Cubana Inform Cienc Salud. 2017 [16/02/2020];28(1). Disponible en: Disponible en: http://www.acimed.sld.cu/index.php/acimed/article/view/1033
Segura YC, Martínez NS, Fernández AP. Método basado en ontología para representar decisiones de diseño. Rev Cubana Cienc Informáticas. 2018 [16/02/2020];12(2):147-51. Disponible en: Disponible en: https://rcci.uci.cu/?journal=rcci&page=article&op=view&path%5B%5D=1735&path%5B%5D=0
Pesquita C, Ferreira JD, Couto FM, Silva MJ. The epidemiology ontology: an ontology for the semantic annotation of epidemiological resources. Journal of biomedical semantics. 2014 [16/02/2020];5(1):1-7. Disponible en: Disponible en: https://link.springer.com/article/10.1186/2041-1480-5-4
Hulo C, Masson P, de Castro E, Auchincloss AH, Foulger R, Poux S, et al. The ins and outs of eukaryotic viruses: Knowledge base and ontology of a viral infection. PloS One. 2017 [16/02/2020];12(2):e0171746. Disponible en: Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171746
Ricaurte JAB, Sanabria JSG, Castellanos GC. Ontomastitis: ontología para la mastitis bovina. Ingen Innov. 2016 [16/02/2020];4(2). Disponible en: Disponible en: https://revistas.unicordoba.edu.co/index.php/rii/article/view/1183
Noy NF, McGuinness DL. Ontology Development 101: A Guide to Creating Your First Ontology. Stanford: Stanford Medical Informatics; 2001.
Yang C, Ambayo H, De Baets B, Kolsteren P, Thanintorn N, Hawwash D, et al. An Ontology to Standardize Research Output of Nutritional Epidemiology: From Paper-Based Standards to Linked Content. Nutrients. 2019 [16/02/2020];11(6):1300. Disponible en: Disponible en: https://www.mdpi.com/2072-6643/11/6/1300
Magumba MA, Nabende P, editors. An ontology for generalized disease incidence detection on twitter. International Conference on Hybrid Artificial Intelligence Systems; 2017.
Amith M, Fujimoto K, Mauldin R, Tao C. Friend of a Friend with Benefits ontology (FOAF+): extending a social network ontology for public health. BMC Med Inform Decis Mak. 2020 [16/02/2020];20(10):1-14. Disponible en: Disponible en: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-01287-8
León YR, Ruiz JAS, Mederos AAL. Diseño de una ontología para la gestión de datos heterogéneos en universidades: marco metodológico. Rev Cubana Inform Cienc Salud. 2016 [16/02/2020];27(4). Disponible en: Disponible en: http://www.acimed.sld.cu/index.php/acimed/article/view/1010
Kumar MK, editor. Creation of dynamic ontologies for graphical representation in user interface using NeOn in Shodhganga. India: Theses and Dissertations (ETD) Symposium; 2017.
Kotis KI, Vouros GA, Spiliotopoulos D. Ontology engineering methodologies for the evolution of living and reused ontologies: status, trends, findings and recommendations. The Knowledge Engineering Review. 2020 [16/02/2020];35:e4. Disponible en: Disponible en: https://www.cambridge.org/core/article/
Horridge M. A Practical Guide To Building OWL Ontologies Using Protégé 4 and CO-ODE Tools Edition 1.2. Manchester: University of Manchester; 2009.
Cowell LG, Smith B. Infectious disease ontology. Infectious disease informatics: Springer; 2010. p. 373-95.
Alsudias L, Rayson P, editors. Developing an Arabic Infectious Disease Ontology to Include Non-Standard Terminology. Proceedings of The 12th Language Resources and Evaluation Conference; 2020.
He Y, Yu H, Ong E, Wang Y, Liu Y, Huffman A, et al. CIDO, a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Scientific data. 2020 [16/02/2020];7(1):1-5. Disponible en: Disponible en: https://www.nature.com/articles/s41597-020-0523-6
Shen Y, Yuan K, Chen D, Colloc J, Yang M, Li Y, et al. An ontology-driven clinical decision support system (IDDAP) for infectious disease diagnosis and antibiotic prescription. Artificial intelligence in medicine. 2018 [16/02/2020];86:20-32. Disponible en: Disponible en: https://www.sciencedirect.com/science/article/pii/S0933365717302348
Rodríguez Perojo K, Leyva Mederos AA, Senso Ruíz JA. Marco procedimental para facilitar la interoperabilidad en el contexto de la Biblioteca Virtual en Salud de Cuba: el modelo Ontomed. Rev Cubana Inform Cienc Salud. 2016;27(4):456-73. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2307-21132016000400004
Hidalgo-Delgado Y, Mariño-Molerio AJ, Amoroso-Fernández Y, Leiva-Mederos AA. Algunas reflexiones sobre los datos abiertos enlazados en Cuba. Rev Cubana Inform Cienc Salud. 2018;29(4):1-9. Disponible en: http://www.acimed.sld.cu/index.php/acimed/article/view/1271