2023, Número 1
<< Anterior Siguiente >>
Medicina & Laboratorio 2023; 27 (1)
Exposición a material particulado y su relación con el cáncer de mama. Mecanismos fisiopatológicos
Mera-Mamián AY, Villarreal-Garza C, Segura-Cardona AM, Muñoz-Rodríguez DI, Rodríguez-Villamizar LA, García-García HI
Idioma: Español
Referencias bibliográficas: 49
Paginas: 13-24
Archivo PDF: 406.36 Kb.
RESUMEN
Introducción. El cáncer de mama es el tipo de cáncer que genera más
muertes en mujeres en el mundo. Aunque se reconoce el aporte de factores genéticos,
hormonales y de estilos de vida como sus principales causas, las hipótesis
que señalan que la contaminación del ambiente juega un papel importante en
su desarrollo, han tomado mucha fuerza en los últimos años. Estas hipótesis surgen
debido a que el aumento en la incidencia del cáncer de mama coincide con
procesos de industrialización, además de mayor presencia en regiones urbanas y
con altos niveles de contaminación. El objetivo de este artículo fue consolidar información
sobre los mecanismos fisiopatológicos que puedan explicar la relación
entre cáncer de mama y la contaminación por material particulado.
Metodología.
Se realizó una búsqueda de literatura en PubMed, Google Académico y Epistemonikos
para documentos publicados sobre el tema desde enero de 2016 hasta el 3
de agosto de 2022.
Resultados. Se encontró que algunos de los mecanismos que
podrían explicar dicha relación incluyen: alteraciones endocrinas que favorecen
cambios hormonales, induciendo el crecimiento mamario; cambios en las características
histológicas del tejido normal, como involución reducida de unidades
lobulares ductales terminales; formación de aductos de hidrocarburos aromáticos policíclicos-ácido desoxirribonucleico (HAP-ADN), con mutación específica del
gen TP53; activación de la proliferación en la línea celular MCF-7; y, alteraciones
en la metilación del ADN.
Conclusión. Si bien órganos distales como la mama no
son la primera entrada de los contaminantes ambientales al cuerpo, estos sí pueden
verse afectados tras la exposición a largo plazo, a través de diferentes mecanismos
de disrupción endocrina y daño al ADN principalmente.
REFERENCIAS (EN ESTE ARTÍCULO)
World Health Organization (WHO). GlobalCancer Observatory-Estimated number of newcases in 2020, worldwide, females, all ages. Ginebra,Suiza: WHO; 2020. Acceso 5 de julio de 2022. Disponible en https://gco.iarc.fr/
World Health Organization (WHO). Cáncerde mama. Ginebra, Suiza: WHO; 2021. Acceso10 de julio de 2022. Disponible en https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer.
Mera-Mamián AY, Reyes-Burgos B, Bedoya-Carvajal ÓA, Quirós-Gómez Ó, Muñoz-RodríguezDI, Segura-Cardona ÁM. Factoresrelacionados con la recuperación de la capacidadfuncional en mujeres con cáncer de mama:revisión sistemática. Cult Cienc y Deporte2021;16:235-246. https://doi.org/10.12800/ccd.v16i48.1714.
Johnson RH, Anders CK, Litton JK, RuddyKJ, Bleyer A. Breast cancer in adolescentsand young adults. Pediatr Blood Cancer2018;65:e27397. https://doi.org/10.1002/pbc.27397.
Parikh PV, Wei Y. PAHs and PM2.5 emissionsand female breast cancer incidence in metroAtlanta and rural Georgia. Int J Environ HealthRes 2016;26:458-466. https://doi.org/10.1080/09603123.2016.1161178.
Wei Y, Davis J, Bina WF. Ambient air pollutionis associated with the increased incidenceof breast cancer in US. Int J Environ Health Res2012;22:12-21. https://doi.org/10.1080/09603123.2011.588321.
Guo Q, Wang X, Gao Y, Zhou J, Huang C,Zhang Z, et al. Relationship between particulatematter exposure and female breastcancer incidence and mortality: a systematicreview and meta-analysis. Int Arch Occup EnvironHealth 2021;94:191-201. https://doi.org/10.1007/s00420-020-01573-y.
Hwang J, Bae H, Choi S, Yi H, Ko B, Kim N.Impact of air pollution on breast cancer incidenceand mortality: a nationwide analysis inSouth Korea. Sci Rep 2020;10:5392. https://doi.org/10.1038/s41598-020-62200-x.
Rodgers KM, Udesky JO, Rudel RA, Brody JG.Environmental chemicals and breast cancer: Anupdated review of epidemiological literature informedby biological mechanisms. Environ Res2018;160:152-182. https://doi.org/10.1016/j.envres.2017.08.045.
White AJ, Chen J, Teitelbaum SL, McCulloughLE, Xu X, Hee Cho Y, et al. Sources ofpolycyclic aromatic hydrocarbons are associatedwith gene-specific promoter methylationin women with breast cancer. Environ Res2016;145:93-100. https://doi.org/10.1016/j.envres.2015.11.033.
Andersen ZJ, Stafoggia M, Weinmayr G,Pedersen M, Galassi C, Jørgensen JT, et al.Long-term exposure to ambient air pollutionand incidence of postmenopausal breast cancerin 15 European cohorts within the ESCAPE project.Environ Health Perspect 2017;125:107005.https://doi.org/10.1289/ehp1742.
Datzmann T, Markevych I, Trautmann F,Heinrich J, Schmitt J, Tesch F. Outdoor airpollution, green space, and cancer incidencein Saxony: a semi-individual cohort study.BMC Public Health 2018;18:715. https://doi.org/10.1186/s12889-018-5615-2.
Gasca-Sánchez FM, Santuario-Facio SK,Ortiz-López R, Rojas-Martínez A, Mejía-VelázquezGM, Garza-Pérez EM, et al. Spatialinteraction between breast cancer and environmentalpollution in the Monterrey MetropolitanArea. Heliyon 2021;7:e07915. https://doi.org/10.1016/j.heliyon.2021.e07915.
White AJ, Bradshaw PT, Hamra GB. Airpollution and breast cancer: A review. CurrEpidemiol Rep 2018;5:92-100. https://doi.org/10.1007/s40471-018-0143-2.
International Agency for Research on Cancer(IARC)-World Health Organization (WHO).Outdoor air pollution. IARC monographs onthe evaluation of carcinogenic risks to humans.Lyon, France: IARC; 2015. 109. Acceso 26 dejunio de 2022. Disponible en https://publications.iarc.fr/538.
Mukherjee S, Dasgupta S, Mishra PK, ChaudhuryK. Air pollution-induced epigenetic changes:disease development and a possible linkwith hypersensitivity pneumonitis. Environ SciPollut Res Int 2021;28:55981-56002. https://doi.org/10.1007/s11356-021-16056-x.
Fiordelisi A, Piscitelli P, Trimarco B, CoscioniE, Iaccarino G, Sorriento D. The mechanismsof air pollution and particulate matterin cardiovascular diseases. Heart Fail Rev2017;22:337-347. https://doi.org/10.1007/s10741-017-9606-7.
Hahad O, Lelieveld J, Birklein F, Lieb K,Daiber A, Münzel T. Ambient air pollutionincreases the risk of cerebrovascular and neuropsychiatricdisorders through induction ofinflammation and oxidative stress. Int J MolSci 2020;21:4306. https://doi.org/10.3390/ijms21124306.
Miller MR. Oxidative stress and the cardiovasculareffects of air pollution. Free Radic Biol Med
2020;151:69-87. https://doi.org/10.1016/j.freeradbiomed.2020.01.004.20. Gabet S, Lemarchand C, Guénel P, Slama R.Breast cancer risk in association with atmospheric pollution exposure: A meta-analysisof effect estimates followed by a health impactassessment. Environ Health Perspect2021;129:57012. https://doi.org/10.1289/ehp8419.
Zhang Z, Yan W, Chen Q, Zhou N, Xu Y. Therelationship between exposure to particulatematter and breast cancer incidence and mortality:A meta-analysis. Medicine (Baltimore)2019;98:e18349. https://doi.org/10.1097/md.0000000000018349.
Sung H, Ferlay J, Siegel RL, Laversanne M,Soerjomataram I, Jemal A, et al. Global cancerstatistics 2020: GLOBOCAN estimates of incidenceand mortality worldwide for 36 cancersin 185 countries. CA Cancer J Clin 2021;71:209-249. https://doi.org/10.3322/caac.21660.
White AJ, Weinberg CR, O'Meara ES, SandlerDP, Sprague BL. Airborne metals and polycyclicaromatic hydrocarbons in relation tomammographic breast density. Breast CancerRes 2019;21:24. https://doi.org/10.1186/s13058-019-1110-7.
Kresovich JK, Erdal S, Chen HY, Gann PH,Argos M, Rauscher GH. Metallic air pollutantsand breast cancer heterogeneity. Environ Res2019;177:108639. https://doi.org/10.1016/j.envres.2019.108639.
Yaghjyan L, Arao R, Brokamp C, O'Meara ES,Sprague BL, Ghita G, et al. Association betweenair pollution and mammographic breastdensity in the Breast Cancer Surveilance Consortium.Breast Cancer Res 2017;19:36. https://doi.org/10.1186/s13058-017-0828-3.
Nazari SS, Mukherjee P. An overview of mammographicdensity and its association withbreast cancer. Breast Cancer 2018;25:259-267.https://doi.org/10.1007/s12282-018-0857-5.
Figueroa JD, Pfeiffer RM, Brinton LA, PalakalMM, Degnim AC, Radisky D, et al.Standardized measures of lobular involutionand subsequent breast cancer risk amongwomen with benign breast disease: a nestedcase-control study. Breast Cancer Res Treat2016;159:163-172. https://doi.org/10.1007/s10549-016-3908-7.
Niehoff NM, Keil AP, Jones RR, Fan S, GierachGL, White AJ. Outdoor air pollution andterminal duct lobular involution of the normalbreast. Breast Cancer Res 2020;22:100. https://doi.org/10.1186/s13058-020-01339-x.
Mahadevan B, Keshava C, Musafia-JeknicT, Pecaj A, Weston A, Baird WM. Alteredgene expression patterns in MCF-7 cells inducedby the urban dust particulate complexmixture standard reference material 1649a.Cancer Res 2005;65:1251-1258. https://doi.org/10.1158/0008-5472.Can-04-2357.
Chen ST, Lin CC, Liu YS, Lin C, Hung PT, JaoCW, et al. Airborne particulate collected fromcentral Taiwan induces DNA strand breaks,Poly(ADP-ribose) polymerase-1 activation, andestrogen-disrupting activity in human breastcarcinoma cell lines. J Environ Sci Health A ToxHazard Subst Environ Eng 2013;48:173-181.https://doi.org/10.1080/10934529.2012.717809.
Mordukhovich I, Rossner P, Jr., Terry MB,Santella R, Zhang YJ, Hibshoosh H, et al.Associations between polycyclic aromatichydrocarbon-related exposures and p53 mutationsin breast tumors. Environ Health Perspect2010;118:511-518. https://doi.org/10.1289/ehp.0901233.
Cheng I, Tseng C, Wu J, Yang J, Conroy SM,Shariff-Marco S, et al. Association betweenambient air pollution and breast cancer risk:The multiethnic cohort study. Int J Cancer2020;146:699-711. https://doi.org/10.1002/ijc.32308.
Niehoff N, White AJ, McCullough LE, SteckSE, Beyea J, Mordukhovich I, et al. Polycyclicaromatic hydrocarbons and postmenopausalbreast cancer: An evaluation of effect measuremodification by body mass index and weightchange. Environ Res 2017;152:17-25. https://doi.org/10.1016/j.envres.2016.09.022.
Niehoff NM, Terry MB, Bookwalter DB,Kaufman JD, O'Brien KM, Sandler DP, etal. Air pollution and breast cancer: An examinationof modification by underlying familialbreast cancer risk. Cancer Epidemiol BiomarkersPrev 2022;31:422-429. https://doi.org/10.1158/1055-9965.Epi-21-1140.
Callahan CL, Bonner MR, Nie J, Han D, WangY, Tao MH, et al. Lifetime exposure to ambientair pollution and methylation of tumor suppressorgenes in breast tumors. Environ Res2018;161:418-424. https://doi.org/10.1016/j.envres.2017.11.040.
Tang Q, Cheng J, Cao X, Surowy H, BurwinkelB. Blood-based DNA methylation as biomarkerfor breast cancer: a systematic review. Clin Epigenetics2016;8:115. https://doi.org/10.1186/s13148-016-0282-6.
Wei W, Wu BJ, Wu Y, Tong ZT, Zhong F, HuCY. Association between long-term ambient airpollution exposure and the risk of breast cancer:a systematic review and meta-analysis. EnvironSci Pollut Res Int 2021;28:63278-63296.https://doi.org/10.1007/s11356-021-14903-5.
White AJ, O'Brien KM, Niehoff NM, CarrollR, Sandler DP. Metallic air pollutants andbreast cancer risk in a nationwide cohort study.Epidemiology 2019;30:20-28. https://doi.org/10.1097/ede.0000000000000917.
Khanjani N, Jafarnejad AB, Tavakkoli L. Arsenicand breast cancer: a systematic reviewof epidemiologic studies. Rev Environ Health2017;32:267-277. https://doi.org/10.1515/reveh-2016-0068.
Miller MF, Goodson WH, Manjili MH, KleinstreuerN, Bisson WH, Lowe L. Low-dosemixture hypothesis of carcinogenesis workshop:Scientific underpinnings and researchrecommendations. Environ Health Perspect2017;125:163-169. https://doi.org/10.1289/ehp411.
Ebrahim AM, Eltayeb MA, Shaat MK, MohmedNM, Eltayeb EA, Ahmed AY. Studyof selected trace elements in cancerous andnon-cancerous human breast tissues fromSudanese subjects using instrumental neutronactivation analysis. Sci Total Environ2007;383:52-58. https://doi.org/10.1016/j.scitotenv.2007.04.047.
Men Y, Li L, Zhang F, Kong X, Zhang W, HaoC, et al. Evaluation of heavy metals and metabolitesin the urine of patients with breast cancer.Oncol Lett 2020;19:1331-1337. https://doi.org/10.3892/ol.2019.11206.
Wei Y, Zhu J. Blood levels of endocrine-disruptingmetals and prevalent breast cancer amongUS women. Med Oncol 2020;37:1. https://doi.org/10.1007/s12032-019-1328-3.
Shmuel S, White AJ, Sandler DP. Residentialexposure to vehicular traffic-related air pollutionduring childhood and breast cancer risk.Environ Res 2017;159:257-263. https://doi.org/10.1016/j.envres.2017.08.015.
Reding KW, Young MT, Szpiro AA, Han CJ,DeRoo LA, Weinberg C, et al. Breast cancerrisk in relation to ambient air pollution exposureat residences in the sister study cohort. CancerEpidemiol Biomarkers Prev 2015;24:1907-1909. https://doi.org/10.1158/1055-9965.Epi-15-0787.
Coudon T, Danjou AM, Faure E, Praud D, SeveriG, Mancini FR, et al. Development andperformance evaluation of a GIS-based metricto assess exposure to airborne pollutant emissionsfrom industrial sources. Environ Health2019;18:8. https://doi.org/10.1186/s12940-019-0446-x.
Terry MB, Michels KB, Brody JG, Byrne C,Chen S, Jerry DJ, et al. Environmental exposuresduring windows of susceptibility for breastcancer: a framework for prevention research.Breast Cancer Res 2019;21:96. https://doi.org/10.1186/s13058-019-1168-2.
Cazzolla-Gatti R. Why we will continue to loseour battle with cancers if we do not stop theirtriggers from environmental pollution. Int J EnvironRes Public Health 2021;18:6107. https://doi.org/10.3390/ijerph18116107.
Krieger N. Health equity and the fallacy of treatingcauses of population health as if they sumto 100. Am J Public Health 2017;107:541-549.https://doi.org/10.2105/ajph.2017.303655.