2022, Número S1
<< Anterior Siguiente >>
Alerg Asma Inmunol Pediatr 2022; 31 (S1)
Capítulo 1. Propiedades moleculares de los alergenos
Ramírez-Rodríguez MA, García-Ramírez B, Rodríguez-Romero A
Idioma: Español
Referencias bibliográficas: 89
Paginas: 18-41
Archivo PDF: 464.39 Kb.
RESUMEN
Este capítulo es una amplia revisión de los alergenos y la alergenicidad desde el punto de vista bioquímico e inmunológico, destaca su conocimiento con relación a la relevancia clínica. Los autores describen la función biológica, la estructura bioquímica, la correlación bioquímica-clínica y el fundamento de reactividad cruzada de los alergenos que han demostrado ser los principales causantes de las enfermedades alérgicas de los pacientes a nivel mundial.
REFERENCIAS (EN ESTE ARTÍCULO)
Traidl-Hoffmann C, Jakob T, Behrendt H. Determinants of allergenicity. J Allergy Clin Immunol 2009;123(3):558-566. doi: 10.1016/j.jaci.2008.12.003
Mares-Mejía I, Martínez-Caballero S, Garay-Canales C, Cano-Sánchez P, Torres-Larios A, Lara-González S, et al. Structural insights into the IgE mediated responses induced by the allergens Hev b 8 and Zea m 12 in their dimeric forms. Sci Rep. 2016;6:32552. doi: 10.1038/srep32552.
Hewitt CR, Brown AP, Hart BJ, Pritchard DI. A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med. 1995;182(5):1537-1544. doi: 10.1084/jem.182.5.1537.
Caraballo L, Valenta R, Acevedo N, Zakzuk J. Are the terms major and minor allergens useful for precision allergology? Front Immunol. 2021;12:651500. doi: 10.3389/fimmu.2021.651500.
King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W. Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol 1994;105(3):224-233. doi: 10.1159/000236761.
Open database: Who’s Certified Internet. Medical University of Vienna: AllFam-Database of Allergen Families. [Cited 2021 Aug 8]. Available in: http://www.meduniwien.ac.at/allfam/
Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin Immunol. 2010;6:1.
Breiteneder H, Radauer C. A classification of plant food allergens. J Allergy Clin Immunol 2004;113(5):821-830. doi: 10.1016/j.jaci.2004.01.779.
Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007;120:518-525. Available in: https://doi.org/10.1016/j.jaci.2007.07.024
Moreno FJ, Clemente A. 2S Albumin storage proteins: what makes them food allergens. Open Biochem J. 2008;2:16-28. doi: 10.2174/1874091X00802010016.
Lehmann K, Schweimer K, Reese G, Randow S, Suhr M, Becker WM, et al. Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J 2006;395:463-472. doi: 10.1042/BJ20051728.
Breiteneder H, Mills C. Nonspecific lipid-transfer proteins in plant foods and pollens: an important allergen class. Curr Opin Allergy. 2005;5:275-279. doi: 10.1097/01.all.0000168794.35571.a5.
Morales M, López-Matas A, Moya R, Carnés J. Cross-reactivity among non-specific lipid-transfer proteins from food and pollen allergenic sources. Food Chemistry. 2014;165:397-402. doi: 10.1016/j.foodchem.2014.05.101.
Scheurer S, Schulke S. Interaction of non-specific lipid-transfer proteins with plant-derived lipids and its impact on allergic sensitization. Front Immunol 2018;9:1389. doi: 10.3389/fimmu.2018.01389.
Mills EN, Jenkins JA, Alcocer MJ, Shewry PR. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 2004;44(5):379-407. doi: 10.1080/10408690490489224.
Baar A, Pahr S, Constantin C, Scheiblhofer S, Thalhamer J, Giavi S, et al. Molecular and immunological characterization of Tri a 36, a low molecular weight glutenin, as a novel major wheat food allergen. J Immunol. 2012;189(6):3018-3025. doi: 10.4049/jimmunol.1200438.
Gonzalez R, Varela J, Carreira J, Polo F. Soybean hydrophobic protein and soybean hull allergy. Lancet 1995;346:48-49. doi: 10.1016/S0140-6736(95)92676-3.
Baud F, Pebay-Peyroula E, Cohen-Addad C, Odani S, Lehmann MS. Crystal structure of hydrophobic protein from soybean; a member of a new cysteine-rich family. J Mol Biol 1993;231(3):877-887. doi: 10.1006/jmbi.1993.1334.
Mills EN, Jenkins J, Marigheto N, Belton PS, Gunning AP, Morris VJ. Allergens of the cupin superfamily. Biochem Soc Trans. 2002;30(6):925-929. doi: 10.1042/bst0300925.
Valenta R, Duchene M, Ebner C, Valent P, Sillaber C, Deviller P, et al. Profilins constitute a novel family of functional plant pan-allergens. J Exp Med. 1992;175:377-385. doi: 10.1084/jem.175.2.377.
Hauser M, Egger M, Wallner M, Wopfner N, Schmidt G, Ferreira F. Molecular properties of plant food allergens: a current classification into protein families. The Open Immunology Journal. 2008;1:1-12.
Asero R, Mistrello G, Roncarolo D, Amato S, Zanoni D, Barocci F, et al. Detection of clinical markers of sensitization to profilin in patients allergic to plant-derived foods. J Allergy Clin Immunol 2003;112(2):427-432. doi: 10.1067/mai.2003.1611.
Ebner C, Hirschwehr R, Bauer L, Breiteneder H, Valenta R, Ebner H, et al.. Identification of allergens in fruits and vegetables: IgE cross-reactivities with the important birch pollen allergens Bet v 1 and Bet v 2 (birch profilin). J Allergy Clin Immunol. 1995;95:962-969. doi: 10.1016/s0091-6749(95)70096-x.
Sirvent, S, Palomares O, Cuesta-Herranz J, Villalba M, Rodríguez R. Analysis of the structural and immunological stability of 2S albumin, nonspecific lipid transfer protein, and profilin allergens from mustard seeds. J Agric Food Chem. 2012;60(23):6011-6018. doi: 10.1021/jf300555h.
Verdino P, Barderas R, Villalba M, Westritschnig K, Valenta R, Rodriguez R, Keller W. Three-dimensional structure of the cross-reactive pollen allergen Che a 3: visualizing cross-reactivity on the molecular surfaces of weed, grass, and tree pollen allergens. J Immunol. 2008;180(4):2313-2321. doi: 10.4049/jimmunol.180.4.2313.
Kuehn A, Radauer C, Swoboda I, Kleine-Tebbe J. Fischallergie: parvalbumine und andere allergene. Allergo Journal. 2012;21(1):16-18. doi: 10.1007/s15007-012-0013-z.
Van Do T, Elsayed S, Florvaag E, Hordvik I, Endresen C. Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish. J Allergy Clin Immunol. 2005;116(6):1314-1320. doi: 10.1016/j.jaci.2005.07.033.
Kuehn A, Lehners C, Hilger C, Hentges F. Food allergy to chicken meat with IgE reactivity to muscle alpha-parvalbumin. Allergy. 2009;64(10):1557-1558. doi: 10.1111/j.1398-9995.2009.02094.x.
Arif SH. A Ca(2+)-binding protein with numerous roles and uses: parvalbumin in molecular biology and physiology. Bioessays. 2009;31(4):410-421. doi: 10.1002/bies.200800170.
Kobayashi A, Tanaka H, Hamada Y, Ishizaki S, Nagashima Y, Shiomi K. Comparison of allergenicity and allergens between fish white and dark muscles. Allergy. 2006;61(3):357-363. doi: 10.1111/j.1398-9995.2006.00966.x.
Moman RN, Gupta N, Varacallo M. Physiology, albumin. Updated 2020 Sep 22. In: StatPearls Internet. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available in: https://www.ncbi.nlm.nih.gov/books/NBK459198/
De Silva R, Dasanayake W, Wickramasinhe GD, Karunatilake C, Weerasinghe N, Gunasekera P, et al. Sensitization to bovine serum albumin as a possible cause of allergic reactions to vaccines. Vaccine. 2017;35(11):1494-1500. doi: 10.1016/j.vaccine.2017.02.009.
Bujacz A, Talaj JA, Zielinski K, Pietrzyk-Brzezinska AJ, Neumann P. Crystal structures of serum albumins from domesticated ruminants and their complexes with 3,5-diiodosalicylic acid. Acta crystallographica. Section D, Structural Biology. 2017;73(11):896-909. doi: 10.1107/S205979831701470X.
Chruszcz M, Mikolajczak K, Mank N, Majorek KA, Porebski PJ, Minor W. Serum albumins-unusual allergens. Biochim Biophys Acta. 2013;1830(12):5375-5381. doi: 10.1016/j.bbagen.2013.06.016.
Quirce S, Marañón F, Umpiérrez A, de las Heras M, Fernández-Caldas E, Sastre J. Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy. 2001;56(8):754-762. doi: 10.1034/j.1398-9995.2001.056008754.x.
Gunning PW, Schevzov G, Kee AJ, Hardeman EC. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol. 2005;15(6):333-341. doi: 10.1016/j.tcb.2005.04.007.
Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP. Tropomyosin-master regulator of actin filament function in the cytoskeleton. J Cell Sci. 2015;128:2965-2974. doi: 10.1242/jcs.172502.
Reese G, Ayuso R, Lehrer S B. Tropomyosin: an invertebrate pan-allergen. Int Arch Allergy Immunol. 1999;119:247-258. doi: 10.1159/000024201.
James JK, Pike DH, Khan IJ, Nanda V. Structural and dynamic properties of allergen and non-allergen forms of tropomyosin. Structure. 2018;26(7):997-1006. doi: 10.1016/j.str.2018.05.002.
Huang YY, Liu GM, Cai QF, Weng WY, Maleki SJ, Su WJ, et al. Stability of major allergen tropomyosin and other food proteins of mud crab (Scylla serrata) by in vitro gastrointestinal digestion. Food Chem Toxicol. 2010;48(5):1196-1201. doi: 10.1016/j.fct.2010.02.010.
Jeong KY, Hong CS, Yong TS. Allergenic tropomyosins and their cross-reactivities. Protein Pept Lett. 2006;13:835-845. doi: 10.2174/092986606777841244.
Lehrer SB, Ayuso R, Reese G. Seafood allergy and allergens: a review. Mar Biotechnol (NY). 2003;5(4):339-348. doi: 10.1007/s10126-002-0082-1.
Cantillo JF, Puerta L, Puchalska P, Lafosse-Marin S, Subiza JL, Fernández-Caldas E. Allergenome characterization of the mosquito Aedes aegypti. Allergy. 2017;72(10):1499-1509. doi: 10.1111/all.13150.
Flower DR. The lipocalin protein family: structure and function. The Biochem J. 1996;318(1):1-14. doi: 10.1042/bj3180001.
Mantyjarvi R, Rautiainen J, Virtanen T. Lipocalins as allergens. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology. 2000;1482(1-2):308-317. doi: 10.1016/S0167-4838(00)00139-4.
Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology. 1999;55(2):85-97. doi: 10.1006/pmpp.1999.0213.
Gibbs GM, Roelants K, O’Bryan M K. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins-roles in reproduction, cancer, and immune defense. Endocr Rev. 2008;29(7):865-897. doi: 10.1210/er.2008-0032.
Sinha M, Singh RP, Kushwaha GS, Iqbal N, Singh A, Kaushik S, et al. Current overview of allergens of plant pathogenesis related protein families. ScientificWorldJournal. 2014;2014:543195. doi: 10.1155/2014/543195.
Breiteneder H. Thaumatin-like proteins - a new family of pollen and fruit allergens. Allergy. 2004;59(5):479-481. doi: 10.1046/j.1398-9995.2003.00421.x.
Soh WT, Aglas L, Mueller GA, Gilles S, Weiss R, Scheiblhofer S, et al. Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity. Allergy. 2019;74(12):2382-2393. doi: 10.1111/all.13948.
Flores T, Alape-Giron A, Flores-Diaz M, Flores HE. Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities. Plant Physiol. 2002;128(4):1291-1302. doi: 10.1104/pp.010541.
Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S. Accumulation of pathogenesis-related (PR) 10/Bet v 1 protein homologues in mulberry (Morus bombycis Koidz.) tree during winter. Plant Cell Environ. 2004;27(9):1112-1121. doi: 10.1111/j.1365-3040.2004.01216.x.
Fernandes H, Michalska K, Sikorski M, Jaskolski M. Structural and functional aspects of PR-10 proteins. FEBS J. 2013;280(5):1169-1199. doi: 10.1111/febs.12114.
Seutter von Loetzen C, Hoffmann T, Hartl MJ, Schweimer K, Schwab W, Rosch P, et al. Secret of the major birch pollen allergen Bet v 1: identification of the physiological ligand. Biochem J. 2014;457(3):379-390. doi: 10.1042/bj20130413.
Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121(4):847-852. doi: 10.1016/j.jaci.2008.01.025.
Gajhede M, Osmark P, Poulsen FM, Ipsen H, Larsen JN, et al. X-ray and NMR structure of Bet v 1, the origin of birch pollen allergy. Nat Struct Biol. 1996;3(12):1040-1045. doi: 10.1038/nsb1296-1040.
Ferreira F, Hirtenlehner K, Jilek A, Godnik-Cvar J, Breiteneder H, Grimm R, et al. Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy. J Exp Med. 1996;183(2):599-609. doi: 10.1084/jem.183.2.599.
Pedrosa M, Guerrero-Sanchez VM, Canales-Bueno N, Loli-Ausejo D, Castillejo MA, Quirce S, et al. Quercus ilex pollen allergen, Que i 1, responsible for pollen food allergy syndrome caused by fruits in Spanish allergic patients. Clin Exp Allergy 2020;50(7):815-823. doi: 10.1111/cea.13679.
Stemeseder T, Klinglmayr E, Moser S, Lueftenegger L, Lang R, Himly M, et al.. Cross-sectional study on allergic sensitization of Austrian adolescents using molecule-based IgE profiling. Allergy. 2017;72(5):754-763. doi: 10.1111/all.13071.
Open database: Who’s Certified Internet. ExPASy: ENZYME: Enzyme nomenclature database cited 2021. Available in: https://enzyme.expasy.org/
Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995;15;3(3):239-243. doi: 10.1016/s0969-2126(01)00153-8.
Weichel M, Glaser AG, Ballmer-Weber BK, Schmid-Grendelmeier P, Crameri R. Wheat and maize thioredoxins: a novel cross-reactive cereal allergen family related to baker’s asthma. J Allergy Clin Immunol. 2006;117(3):676-681. doi: 10.1016/j.jaci.2005.11.040.
Limacher A, Glaser AG, Meier C, Schmid-Grendelmeier P, Zeller S, Scapozza L, Crameri R. Cross-reactivity and 1.4-A crystal structure of Malassezia sympodialis thioredoxin (Mala s 13), a member of a new pan-allergen family. J Immunol 2007;178(1):389-396. doi: 10.4049/jimmunol.178.1.389.
Fluckiger S, Scapozza L, Mayer C, Blaser K, Folkers G, Crameri R. Immunological and structural analysis of IgE-mediated cross-reactivity between manganese superoxide dismutases. Int Arch Allergy Immunol. 2002;128(4):292-303. doi: 10.1159/000063862.
Borgstahl GE, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992;71(1):107-118. doi: 10.1016/0092-8674(92)90270-m.
Strange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett. 2000;112-113:357-363. doi: 10.1016/s0378-4274(99)00230-1.
Reinemer P, Prade L, Hof P, Neuefeind T, Huber R, Zettl R, et al. Three-dimensional structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 A resolution: structural characterization of herbicide-conjugating plant glutathione S-transferases and a novel active site architecture. J Mol Biol. 1996;255(2):289-309. doi: 10.1006/jmbi.1996.0024.
Siezen RJ, Leunissen JA. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 1997;6(3):501-523. doi: 10.1002/pro.5560060301.
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie. 2019;166:52-76. doi: 10.1016/j.biochi.2019.09.004.
Turk D, Guncar G, Podobnik M, Turk B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem. 1998;379(2):137-147. doi: 10.1515/bchm.1998.379.2.137.
Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000;124(4):1515-1519. doi: 10.1104/pp.124.4.1515.
Nielsen JE, Beier L, Otzen D, Borchert TV, Frantzen HB, Andersen KV, et al. Electrostatics in the active site of an alpha-amylase. Eur J Biochem. 1999;264(3):816-24. doi: 10.1046/j.1432-1327.1999.00664.x.
Van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol. 2002;94(2):137-155. doi: 10.1016/s0168-1656(01)00407-2.
Swift HJ, Brady L, Derewenda ZS, Dodson EJ, Dodson GG, Turkenburg JP, et al. Structure and molecular model refinement of Aspergillus oryzae (TAKA) alpha-amylase: an application of the simulated-annealing method. Acta Crystallogr B. 1991;47(4):535-544. doi: 10.1107/s0108768191001970.
Rodríguez-Romero A, Hernández-Santoyo A, Fuentes-Silva D, Palomares LA, Muñoz-Cruz S, Yépez-Mulia L, et al.. Structural analysis of the endogenous glycoallergen Hev b 2 (endo-β-1,3-glucanase) from Hevea brasiliensis and its recognition by human basophils. Acta Crystallogr D Biol Crystallogr. 2014;70(2):329-341. doi: 10.1107/S1399004713027673.
Volpicella M, Leoni C, Fanizza I, Placido A, Pastorello EA, Ceci LR. Overview of plant chitinases identified as food allergens. J Agric Food Chem. 2014;62(25):5734-5742. doi: 10.1021/jf5007962.
Robertus JD, Monzingo AF. The structure and action of chitinases. EXS 1999;87:125-135. doi: 10.1007/978-3-0348-8757-1_9.
Leoni C, Volpicella M, Dileo M, Gattulli BAR, Ceci LR. Chitinases as food allergens. Molecules. 2019;24(11):2087. doi: 10.3390/molecules24112087.
Seppala U, Alenius H, Turjanmaa K, Reunala T, Palosuo T, Kalkkinen N. Identification of patatin as a novel allergen for children with positive skin prick test responses to raw potato. J Allergy Clin Immunol. 1999;103(1 Pt 1):165-171. doi: 10.1016/s0091-6749(99)70541-5.
Richmond G S, Smith T K. Phospholipases A₁. Int J Mol Sci. 2011;12(1):588-612. doi: 10.3390/ijms12010588.
Hoffman DR. Hymenoptera venom allergens. Clin Rev Allergy Immunol. 2006;30(2):109-128. doi: 10.1385/criai:30:2:109.
Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME. Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res. 2010;345(18):2583-2595. doi: 10.1016/j.carres.2010.10.002.
Lombardero M, Obispo T, Calabozo B, Lezaún A, Polo F, Barber D. Cross-reactivity between olive and other species. Role of Ole e 1-related proteins. Allergy. 2002;57(Suppl 71):29-34. doi: 10.1034/j.1398-9995.2002.057s71029.x.
Robledo Retana T, Bradley-Clarke J, Croll T, Rose R, Hoti I, Stagg AJ, Villalba M, Pickersgill RW. Lig v 1 structure and the inflammatory response to the Ole e 1 protein family. Allergy. 2020;75(9):2395-2398. doi: 10.1111/all.14351.
Andersson K, Lidholm J. Characteristics and immunobiology of grass pollen allergens. Int Arch Allergy Immunol. 2003;130(2):87-107. doi: 10.1159/000069013.
Sampedro J, Cosgrove D J. The expansin superfamily. Genome Biol. 2005;6(12):242. doi: 10.1186/gb-2005-6-12-242.
Rodríguez R, Villalba M. Reacciones cruzadas entre alérgenos: implicaciones de los carbohidratos. Rev Esp Alergol Inmunol Clín. 1997;12(5):269-281.
Batanero E, Villalba M, Monsalve R I, Rodríguez R. Cross-reactivity between the major allergen from olive pollen and unrelated glycoproteins: evidence of an epitope in the glycan moiety of the allergen. J Allergy Clin Immunol. 1996;97(6):1264-1271. doi: 10.1016/s0091-6749(96)70194-x.
Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Armentia A, Salcedo G, Gomez L. Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology. 1996;6(4):471-477. doi: 10.1093/glycob/6.4.471.