2022, Número 5
<< Anterior
Salud Mental 2022; 45 (5)
Prodromes and biological markers in schizophrenia: Importance for the dopamine, glutamate, and neurodevelopmental hypothesis
Díaz-Sánchez JP, Solís-Chagoyán H, Benítez-King GA
Idioma: Ingles.
Referencias bibliográficas: 99
Paginas: 261-272
Archivo PDF: 447.80 Kb.
RESUMEN
Antecedentes. La esquizofrenia es una enfermedad mental multifactorial. Una comprensión básica de sus
componentes etiológicos mejora su entendimiento, su diagnóstico y la selección de posibles blancos terapéuticos.
Objetivo. Reportar los pródromos e indicadores biológicos en pacientes esquizofrénicos o de ultra-
alto riesgo (UHR) y dilucidar su especificidad.
Método. Revisión narrativa de fuentes relevantes en inglés
y español en la base de datos Medline-PubMed sobre las anomalías física menores, anomalías cognitivas,
cambios neuroanatómicos, sinápticos y celulares presentes en pacientes esquizofrénicos y/o en sujetos de
UHR.
Resultados. Los pacientes con EZ y, de manera menos predominante, los sujetos de UHR presentan
manifestaciones fenotípicas y conductuales que se correlacionan con los procesos celulares subyacentes. El
estudio de éstos permite caracterizar diferentes biomarcadores diagnósticos. En la actualidad, su aplicación
en la clínica es limitada por distintos factores como son la fisiopatología poco comprendida, la falta de modelos
de estudio, la homología con otros trastornos psiquiátricos y los escasos ensayos clínicos realizados.
Discusión y conclusión. La esquizofrenia es la manifestación final de daños en el neurodesarrollo prenatal
y post-natal, y se refleja durante la etapa prodrómica en indicadores biológicos tempranos con relevancia
clínica. Se requiere establecer nuevos modelos de estudio que permitan ampliar el conocimiento para ofrecer
biomarcadores específicos para ser usados en el diagnóstico clínico temprano.
REFERENCIAS (EN ESTE ARTÍCULO)
Ambrosio-Gallardo, F., Cruz-Fuentes, C., Heinze-Martin, G., Caraveo-Anduaga, J.,& Cortés-Sotres, J. (2015). Study of minor physical abnormalities in completenuclear Mexican families. Evidence of neurodevelopmental problems inschizophrenia. PloS One, 10(1), e0117080. doi: 10.1371/journal.pone.0117080
Artigue, J., & Tizón, J. L. (2014). Una revisión sobre los factores de riesgo en lainfancia para la esquizofrenia y los trastornos mentales graves del adulto[Review of risks factors in childhood for schizophrenia and severe mentaldisorders in adulthood]. Atencion Primaria, 46(7), 336-356. doi: 10.1016/j.aprim.2013.11.002
Barch, D. M. (2009). Neuropsychological abnormalities in schizophrenia and majormood disorders: similarities and differences. Current Psychiatry Reports, 11(4),313-319. doi: 10.1007/s11920-009-0045-6
Barrón, H., Hafizi, S., Andreazza, A. C., & Mizrahi, R. (2017). Neuroinflammationand Oxidative Stress in Psychosis and Psychosis Risk. International Journal ofMolecular Sciences, 18(3), 651. doi: 10.3390/ijms18030651
Bast, T., Pezze, M., & McGarrity, S. (2017). Cognitive deficits caused by prefrontalcortical and hippocampal neural disinhibition. British Journal of Pharmacology,174(19), 3211-3225. doi: 10.1111/bph.13850
Benítez-King, G. (2006). Melatonin as a cytoskeletal modulator: implicationsfor cell physiology and disease. Journal of Pineal Research, 40(1), 1-9. doi:10.1111/j.1600-079X.2005.00282.x
Benítez-King, G., Ramírez-Rodríguez, G., Ortíz, L., & Meza, I. (2004). The neuronalcytoskeleton as a potential therapeutical target in neurodegenerative diseasesand schizophrenia. Current Drug Targets. CNS and Neurological Disorders,3(6), 515-533. doi: 10.2174/1568007043336761
Bitanihirwe, B. K., & Woo, T. U. (2014). Perineuronal nets and schizophrenia: theimportance of neuronal coatings. Neuroscience and Biobehavioral Reviews, 45,85-99. doi: 10.1016/j.neubiorev.2014.03.018
Brent, B. K., Thermenos, H. W., Keshavan, M. S., & Seidman, L. J. (2013). Gray matteralterations in schizophrenia high-risk youth and early-onset schizophrenia: areview of structural MRI findings. Child and Adolescent Psychiatric Clinics ofNorth America, 22(4), 689-714. doi: 10.1016/j.chc.2013.06.003
Cardozo, P. L., de Lima, I. B. Q., Maciel, E. M. A., Silva, N. C., Dobransky, T., &Ribeiro, F. M. (2019). Synaptic Elimination in Neurological Disorders. CurrentNeuropharmacology, 17(11), 1071-1095. doi: 10.2174/1570159X17666190603170511
Carmeli, C., Knyazeva, M. G., Cuénod, M., & Do, K. Q. (2012). Glutathioneprecursor N-acetyl-cysteine modulates EEG synchronization in schizophreniapatients: a double-blind, randomized, placebo-controlled trial. PloS One, 7(2),e29341. doi: 10.1371/journal.pone.0029341
Chan, R. C. K., Di, X., McAlonan, G. M., & Gong, Q. Y. (2011). Brain anatomicalabnormalities in high-risk individuals, first-episode, and chronic schizophrenia:an activation likelihood estimation meta-analysis of illness progression.Schizophrenia Bulletin, 37(1), 177-188. doi: 10.1093/schbul/sbp073
Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott,J. G., … Whiteford, H. A. (2018). Global Epidemiology and Burden ofSchizophrenia: Findings From the Global Burden of Disease Study 2016.Schizophrenia Bulletin, 44(6), 1195-1203. doi: 10.1093/schbul/sby058
Chong, H. Y., Teoh, S. L., Wu, D. B. C., Kotirum, S., Chiou, C. F., & Chaiyakunapruk,N. (2016). Global economic burden of schizophrenia: a systematic review.Neuropsychiatric Disease and Treatment, 12, 357-373. doi: 10.2147/NDT.S96649
Compton, M. T., & Walker, E. F. (2009). Physical manifestations of neurodevelopmentaldisruption: are minor physical abnormalities part of the syndrome of schizophrenia?.Schizophrenia Bulletin, 35(2), 425-436. doi: 10.1093/schbul/sbn151
Coyle, J. T., Basu, A., Benneyworth, M., Balu, D., & Konopaske, G. (2012).Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications.Handbook of Experimental Pharmacology, (213), 267-295. doi: 10.1007/978-3-642-25758-2_10
Dahoun, T., Trossbach, S. V., Brandon, N. J., Korth, C., & Howes, O. D. (2017). Theimpact of Disrupted-in-Schizophrenia 1 (DISC1) on the dopaminergic system:a systematic review. Translational Psychiatry, 7(1), e1015. doi: 10.1038/tp.2016.282
Do, K. Q., Cuenod, M., & Hensch, T. K. (2015). Targeting Oxidative Stress and AberrantCritical Period Plasticity in the Developmental Trajectory to Schizophrenia.Schizophrenia Bulletin, 41(4), 835-846. doi: 10.1093/schbul/sbv065
Dondé, C., D’Amato, T., & Rey, R. (2018). Dermatoglyphics patterns abnormalitiesas putative markers of psychometric-risk for schizophrenia. PsychiatriaDanubina, 30(1), 109-111.
Donegan, J. J., & Lodge, D. J. (2017). Cell-based therapies for the treatmentof schizophrenia. Brain Research, 1655, 262-269. doi: 10.1016/j.brainres.2016.08.010
Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functionalabnormalities in mood disorders: implications for neurocircuitry models ofdepression. Brain Structure & Function, 213(1-2), 93-118. doi: 10.1007/s00429-008-0189-x
Driver, D. I., Gogtay, N., & Rapoport, J. L. (2013). Childhood onset schizophrenia andearly onset schizophrenia spectrum disorders. Child and Adolescent PsychiatricClinics of North America, 22(4), 539-555. doi: 10.1016/j.chc.2013.04.001
Egbujo, C. N., Sinclair, D., & Hahn, C. G. (2016). Dysregulations of Synaptic VesicleTrafficking in Schizophrenia. Current Psychiatry Reports, 18(8), 77. doi:10.1007/s11920-016-0710-5
Filice, F., Janickova, L., Henzi, T., Bilella, A., & Schwaller, B. (2020). TheParvalbumin Hypothesis of Autism Spectrum Disorder. Frontiers in CellularNeuroscience, 14, 577525. doi: 10.3389/fncel.2020.577525
Franco, J. G., Valero, J., & Labad, A. (2010). Minor physical abnormalities andschizophrenia: literature review. Actas Españolas de Psiquiatria, 38(6), 365-371. Retrieved from: https://www.academia.edu/2642902/Minor_physical_anomalies_and_schizophrenia_literature_review
Forni, P. E., & Wray, S. (2012). Neural crest and olfactory system: new prospective.Molecular Neurobiology, 46(2), 349-360. doi: 10.1007/s12035-012-8286-526. Fornito, A., Yücel, M., Dean, B., Wood, S. J., & Pantelis, C. (2009). Anatomicalabnormalities of the anterior cingulate cortex in schizophrenia: bridging the gapbetween neuroimaging and neuropathology. Schizophrenia Bulletin, 35(5), 973-993. doi: 10.1093/schbul/sbn025
Fu, C. H. Y., & Costafreda, S. G. (2013). Neuroimaging-based biomarkers in psychiatry:clinical opportunities of a paradigm shift. Canadian Journal of Psychiatry. RevueCanadienne de Psychiatrie, 58(9), 499-508. doi: 10.1177/070674371305800904
Fujiwara, H., Yassin, W., & Murai, T. (2015). Neuroimaging studies of socialcognition in schizophrenia. Psychiatry and Clinical Neurosciences, 69(5), 259-267. doi: 10.1111/pcn.12258
Gao, X., Zhang, W., Yao, L., Xiao, Y., Liu, L., Liu, J., … Lui, S. (2018). Associationbetween structural and functional brain alterations in drug-free patientswith schizophrenia: a multimodal meta-analysis. Journal of Psychiatry &Neuroscience: JPN, 43(2), 131-142. doi: 10.1503/jpn.160219
Golembo-Smith, S., Walder, D. J., Daly, M. P., Mittal, V. A., Kline, E., Reeves, G.,& Schiffman, J. (2012). The presentation of dermatoglyphic abnormalities inschizophrenia: a meta-analytic review. Schizophrenia Research, 142(1-3), 1-11.doi: 10.1016/j.schres.2012.10.002
Gonzalez-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction,parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia.Schizophrenia Bulletin, 38(5), 950-957. doi: 10.1093/schbul/sbs010
Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanismsof network oscillations: implications for understanding cortical dysfunction inschizophrenia. Schizophrenia Bulletin, 34(5), 944-961. doi: 10.1093/schbul/sbn070
Grace, A. A. (2016). Dysregulation of the dopamine system in the pathophysiology ofschizophrenia and depression. Nature Reviews. Neuroscience, 17(8), 524-532.doi: 10.1038/nrn.2016.57
Grace, A. A. (2017). Dopamine System Dysregulation and the Pathophysiologyof Schizophrenia: Insights from the Methylazoxymethanol Acetate Model.Biological Psychiatry, 81(1), 5-8. doi: 10.1016/j.biopsych.2015.11.007
Granger, B. (1996). Synaptogénèse et élagage synaptique: rôle dans le déclenchementdes schizophrénies [Synaptogenesis and synaptic pruning: role in triggeringschizophrenia]. Presse Medicale (Paris, France: 1983), 25(33), 1595-1598.
Godsil, B. P., Kiss, J. P., Spedding, M., & Jay, T. M. (2013). The hippocampalprefrontalpathway: the weak link in psychiatric disorders? EuropeanNeuropsychopharmacology: The Journal of the European Collegeof Neuropsychopharmacology, 23(10), 1165-1181. doi: 10.1016/j.euroneuro.2012.10.018
Guilarte, T. R., Opler, M., & Pletnikov, M. (2012). Is lead exposure in early lifean environmental risk factor for Schizophrenia? Neurobiological connectionsand testable hypotheses. Neurotoxicology, 33(3), 560-574. doi: 10.1016/j.neuro.2011.11.008
Hardingham, G. E., & Do, K. Q. (2016). Linking early-life NMDAR hypofunction andoxidative stress in schizophrenia pathogenesis. Nature Reviews. Neuroscience,17(2), 125-134. doi: 10.1038/nrn.2015.19
Hasam-Henderson, L. A., Gotti, G. C., Mishto, M., Klisch, C., Gerevich, Z., Geiger,J. R. P., & Kovács, R. (2018). NMDA-receptor inhibition and oxidative stressduring hippocampal maturation differentially alter parvalbumin expression andgamma-band activity. Scientific Reports, 8(1), 9545. doi: 10.1038/s41598-018-27830-2
Haukvik, U. K., Hartberg, C. B., & Agartz, I. (2013). Schizophrenia--what doesstructural MRI show? Tidsskrift for den Norske Laegeforening: Tidsskrift forPraktisk Medicin, ny Raekke, 133(8), 850-853. doi: 10.4045/tidsskr.12.1084
Hennessy, R. J., McLearie, S., Kinsella, A., & Waddington, J. L. (2005). Facial surfaceanalysis by 3D laser scanning and geometric morphometrics in relation to sexualdimorphism in cerebral--craniofacial morphogenesis and cognitive function.Journal of Anatomy, 207(3), 283-295. doi: 10.1111/j.1469-7580.2005.00444
Hodgins, S., & Klein, S. (2017). New Clinically Relevant Findings about Violence byPeople with Schizophrenia. Canadian journal of psychiatry. Revue Canadiennede Psychiatrie, 62(2), 86-93. doi: 10.1177/0706743716648300
Howes, O. D., & Murray, R. M. (2014). Schizophrenia: an integratedsociodevelopmental-cognitive model. Lancet (London, England), 383(9929),1677-1687. doi: 10.1016/S0140-6736(13)62036-X
Howes, O. D., McCutcheon, R., Owen, M. J., & Murray, R. M. (2017). The Role ofGenes, Stress, and Dopamine in the Development of Schizophrenia. BiologicalPsychiatry, 81(1), 9-20. doi: 10.1016/j.biopsych.2016.07.014
Institute for Health Metrics and Evaluation, Human Development Network, The WorldBank. (2013). The Global Burden of Disease: Generating Evidence, GuidingPolicy – Latin America and Caribbean Regional Edition. Seattle, WA: IHME.
Jackowski, A. P., Araújo Filho, G. M., Almeida, A. G., Araújo, C. M., Reis, M., Nery,F., … Lacerda, A. L. T. (2012). The involvement of the orbitofrontal cortex inpsychiatric disorders: an update of neuroimaging findings. Revista Brasileirade Psiquiatria (Sao Paulo, Brazil: 1999), 34(2), 207-212. doi: 10.1590/s1516-44462012000200014
Jarcho, J. M., Mayer, E. A., Jiang, Z. K., Feier, N. A., & London, E. D. (2012). Pain,affective symptoms, and cognitive deficits in patients with cerebral dopaminedysfunction. Pain, 153(4), 744-754. doi: 10.1016/j.pain.2012.01.002
Jiang, Z., Cowell, R. M., & Nakazawa, K. (2013). Convergence of genetic andenvironmental factors on parvalbumin-positive interneurons in schizophrenia.Frontiers in Behavioral Neuroscience, 7, 116. doi: 10.3389/fnbeh.2013.00116
Keshavan, M., Lizano, P., & Prasad, K. (2020). The synaptic pruning hypothesis ofschizophrenia: promises and challenges. World Psychiatry: Official Journalof the World Psychiatric Association (WPA), 19(1), 110-111. doi: 10.1002/wps.20725
Kim, S. G., Song, J. Y., Joo, E. J., Jeong, S. H., Kim, S. H., Lee, K. Y., …Roh, M. S. (2011). No association of functional polymorphisms inmethlylenetetrahydrofolate reductase and the risk and minor physicalabnormalities of schizophrenia in Korean population. Journal of KoreanMedical Science, 26(10), 1356-1363. doi: 10.3346/jkms.2011.26.10.1356
King, S., Laplante, D., & Joober, R. (2005). Understanding putative risk factors forschizophrenia: retrospective and prospective studies. Journal of Psychiatry &Neuroscience: JPN, 30(5), 342-348.
Kuswanto, C. N., Teh, I., Lee, T. S., & Sim, K. (2012). Diffusion tensor imagingfindings of white matter changes in first episode schizophrenia: a systematicreview. Clinical Psychopharmacology and Neuroscience: The Official ScientificJournal of the Korean College of Neuropsychopharmacology, 10(1), 13-24. doi:10.9758/cpn.2012.10.1.13
Lakhan, S. E., Caro, M., & Hadzimichalis, N. (2013). NMDA Receptor Activityin Neuropsychiatric Disorders. Frontiers in Psychiatry, 4, 52. doi: 10.3389/fpsyt.2013.00052
Laurens, K. R., & Cullen, A. E. (2016). Toward earlier identification and preventativeintervention in schizophrenia: evidence from the London Child Health andDevelopment Study. Social Psychiatry and Psychiatric Epidemiology, 51(4),475-491. doi: 10.1007/s00127-015-1151-x
Laurens, K. R., Luo, L., Matheson, S. L., Carr, V. J., Raudino, A., Harris, F., &Green, M. J. (2015). Common or distinct pathways to psychosis? A systematicreview of evidence from prospective studies for developmental risk factors andantecedents of the schizophrenia spectrum disorders and affective psychoses.BMC Psychiatry, 15, 205. doi: 10.1186/s12888-015-0562-2
Lesh, T. A., Niendam, T. A., Minzenberg, M. J., & Carter, C. S. (2011).Cognitive control deficits in schizophrenia: mechanisms and meaning.Neuropsychopharmacology: Official Publication of the American College ofNeuropsychopharmacology, 36(1), 316-338. doi: 10.1038/npp.2010.156
Levine, S. Z., & Rabinowitz, J. (2010). Trajectories and antecedents of treatmentresponse over time in early-episode psychosis. Schizophrenia Bulletin, 36(3),624-632. doi: 10.1093/schbul/sbn120
Lieberman, J. A., Girgis, R. R., Brucato, G., Moore, H., Provenzano, F., Kegeles,L., … Small, S. A. (2018). Hippocampal dysfunction in the pathophysiologyof schizophrenia: a selective review and hypothesis for early detectionand intervention. Molecular Psychiatry, 23(8), 1764-1772. doi: 10.1038/mp.2017.249
Lim, D. A., & Alvarez-Buylla, A. (2016). The Adult Ventricular-SubventricularZone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring HarborPerspectives in Biology, 8(5), a018820. doi: 10.1101/cshperspect.a018820
Liu, C. H., Keshavan, M., Tronick, E., & Seidman, L. (2015). Perinatal Risks andChildhood Premorbid Indicators of Later Psychosis: Next Steps for EarlyPsychosocial Interventions. Schizophrenia Bulletin, 41(4), 801-816. doi:10.1093/schbul/sbv047
Lobato, M. I., Belmonte-de-Abreu, P., Knijnik, D., Teruchkin, B., Ghisolfi, E., &Henriques, A. (2001). Neurodevelopmental risk factors in schizophrenia.Brazilian Journal of Medical and Biological Research, 34(2), 155-163. doi:10.1590/s0100-879x2001000200002
Marchisella, F., Coffey, E. T., & Hollos, P. (2016). Microtubule and microtubuleassociated protein abnormalities in psychiatric disease. Cytoskeleton (Hoboken,N.J.), 73(10), 596-611. doi: 10.1002/cm.21300
McGrath, J. J., Féron, F. P., Burne, T. H., Mackay-Sim, A., & Eyles, D.W. (2003). The neurodevelopmental hypothesis of schizophrenia: areview of recent developments. Annals of Medicine, 35(2), 86-93. doi:10.1080/07853890310010005
Miguel-Hidalgo, J. J. (2013). Brain structural and functional changes in adolescentswith psychiatric disorders. International Journal of Adolescent Medicine andHealth, 25(3), 245-256. doi: 10.1515/ijamh-2013-0058
Miyoshi, K., Honda, A., Baba, K., Taniguchi, M., Oono, K., Fujita, T., … Tohyama,M. (2003). Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia,participates in neurite outgrowth. Molecular Psychiatry, 8(7), 685-694. doi:10.1038/sj.mp.4001352
Modinos, G., Costafreda, S. G., van Tol, M. J., McGuire, P. K., Aleman, A., & Allen,P. (2013). Neuroanatomy of auditory verbal hallucinations in schizophrenia:a quantitative meta-analysis of voxel-based morphometry studies. Cortex: aJournal Devoted to the Study of the Nervous System and Behavior, 49(4), 1046-1055. doi: 10.1016/j.cortex.2012.01.009
Mubarik, A., & Tohid, H. (2016). Frontal lobe alterations in schizophrenia: a review.Trends in Psychiatry and Psychotherapy, 38(4), 198-206. doi: 10.1590/2237-6089-2015-0088
Murray, R. M., Bhavsar, V., Tripoli, G., & Howes, O. (2017). 30 Years on: Howthe Neurodevelopmental Hypothesis of Schizophrenia Morphed into theDevelopmental Risk Factor Model of Psychosis. Schizophrenia Bulletin, 43(6),1190-1196. doi: 10.1093/schbul/sbx121
Moustafa, A. A., Hewedi, D. H., Eissa, A. M., Frydecka, D., & Misiak, B. (2014).Homocysteine levels in schizophrenia and affective disorders-focus oncognition. Frontiers in Behavioral Neuroscience, 8, 343. doi: 10.3389/fnbeh.2014.00343
Nakahara, S., Matsumoto, M., & van Erp, T. G. M. (2018). Hippocampal subregionabnormalities in schizophrenia: A systematic review of structural andphysiological imaging studies. Neuropsychopharmacology Reports, 38(4), 156-166. doi: 10.1002/npr2.12031
Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., & Belforte,J. E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology.Neuropharmacology, 62(3), 1574-1583. doi: 10.1016/j.neuropharm.2011.01.022
Nakazawa, K., & Sapkota, K. (2020). The origin of NMDA receptor hypofunctionin schizophrenia. Pharmacology & therapeutics, 205, 107426. doi: 10.1016/j.pharmthera.2019.107426
Nickl-Jockschat, T., Schneider, F., Pagel, A. D., Laird, A. R., Fox, P. T., & Eickhoff,S. B. (2011). Progressive pathology is functionally linked to the domains oflanguage and emotion: meta-analysis of brain structure changes in schizophreniapatients. European Archives of Psychiatry and Clinical Neuroscience, 2(Suppl2), S166-S171. doi: 10.1007/s00406-011-0249-8
Ordóñez, A. E., Luscher, Z. I., & Gogtay, N. (2016). Neuroimaging findings fromchildhood onset schizophrenia patients and their non-psychotic siblings.Schizophrenia Research, 173(3), 124-131. doi: 10.1016/j.schres.2015.03.003
Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet (London,England), 388(10039), 86-97. doi: 10.1016/S0140-6736(15)01121-6
Parellada, M., Gomez-Vallejo, S., Burdeus, M., & Arango, C. (2017). DevelopmentalDifferences Between Schizophrenia and Bipolar Disorder. SchizophreniaBulletin, 43(6), 1176-1189. doi: 10.1093/schbul/sbx126
Rapoport, J. L., & Gogtay, N. (2011). Childhood onset schizophrenia: supportfor a progressive neurodevelopmental disorder. International Journal ofDevelopmental Neuroscience: the Official Journal of the InternationalSociety for Developmental Neuroscience, 29(3), 251-258. doi: 10.1016/j.ijdevneu.2010.10.003
Rapp, C., Bugra, H., Riecher-Rössler, A., Tamagni, C., & Borgwardt, S. (2012).Effects of cannabis use on human brain structure in psychosis: a systematicreview combining in vivo structural neuroimaging and postmortemstudies. Current Pharmaceutical Design, 18(32), 5070-5080. doi:10.2174/138161212802884861
Renard, J., Rushlow, W. J., & Laviolette, S. R. (2018). Effects of AdolescentTHC Exposure on the Prefrontal GABAergic System: Implications forSchizophrenia-Related Psychopathology. Frontiers in Psychiatry, 9, 281. doi:10.3389/fpsyt.2018.00281
Ribolsi, M., Daskalakis, Z. J., Siracusano, A., & Koch, G. (2014). Abnormalasymmetry of brain connectivity in schizophrenia. Frontiers in HumanNeuroscience, 8, 1010. doi: 10.3389/fnhum.2014.01010
Rubio, M. D., Drummond, J. B., & Meador-Woodruff, J. H. (2012). Glutamatereceptor abnormalities in schizophrenia: implications for innovativetreatments. Biomolecules & Therapeutics, 20(1), 1-18. doi: 10.4062/biomolther.2012.20.1.001
Sheffield, J. M., & Barch, D. M. (2016). Cognition and resting-state functionalconnectivity in schizophrenia. Neuroscience and Biobehavioral Reviews, 61,108-120. doi: 10.1016/j.neubiorev.2015.12.007
Smucny, J., Wylie, K. P., & Tregellas, J. R. (2014). Functional magnetic resonanceimaging of intrinsic brain networks for translational drug discovery. Trends inPharmacological Sciences, 35(8), 397-403. doi: 10.1016/j.tips.2014.05.001
Steullet, P., Cabungcal, J. H., Monin, A., Dwir, D., O’Donnell, P., Cuenod, M., &Do, K. Q. (2016). Redox dysregulation, neuroinflammation, and NMDAreceptor hypofunction: A “central hub” in schizophrenia pathophysiology?Schizophrenia Research, 176(1), 41-51. doi: 10.1016/j.schres.2014.06.021
Tenyi, T. (2011). Neurodevelopment and schizophrenia: data on minor physicalabnormalities and structural brain imaging. NeuropsychopharmacologiaHungarica: A Magyar Pszichofarmakologiai Egyesulet Lapja = OfficialJournal of the Hungarian Association of Psychopharmacology, 13(4), 229-232.
Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation.Trends in Neurosciences, 29(3), 148-159. doi: 10.1016/j.tins.2006.01.007
Turetsky, B., Hahn, C. G., Borgmann-Winter, K., & Moberg, P. J. (2009). Scentsand nonsense: olfactory dysfunction in schizophrenia. Schizophrenia Bulletin,35(6), 1117-1131. doi: 10.1093/schbul/sbp111
van Erp, T., Walton, E., Hibar, D. P., Schmaal, L., Jiang, W., Glahn, D. C., … Turner, J.A. (2018). Cortical Brain Abnormalities in 4474 Individuals with Schizophreniaand 5098 Control Subjects via the Enhancing Neuro Imaging Genetics ThroughMeta Analysis (ENIGMA) Consortium. Biological Psychiatry, 84(9), 644-654.doi: 10.1016/j.biopsych.2018.04.023
Vijayakumar, N., Bartholomeusz, C., Whitford, T., Hermens, D. F., Nelson, B.,Rice, S., … Amminger, G. P. (2016). White matter integrity in individuals atultra-high risk for psychosis: a systematic review and discussion of the role ofpolyunsaturated fatty acids. BMC Psychiatry, 16(1), 287. doi: 10.1186/s12888-016-0932-4
Waddington, J. L., Katina, S., O’Tuathaigh, C., & Bowman, A. W. (2017).Translational Genetic Modelling of 3D Craniofacial Dysmorphology:Elaborating the Facial Phenotype of Neurodevelopmental Disorders Throughthe “Prism” of Schizophrenia. Current Behavioral Neuroscience Reports, 4(4),322-330. doi: 10.1007/s40473-017-0136-3
Walton, E., Hibar, D. P., van Erp, T., Potkin, S. G., Roiz-Santiañez, R., Crespo-Facorro, B., … Ehrlich, S. (2018). Prefrontal cortical thinning links to negativesymptoms in schizophrenia via the ENIGMA consortium. PsychologicalMedicine, 48(1), 82-94. doi: 10.1017/S0033291717001283
Wang, X., Pinto-Duarte, A., Sejnowski, T. J., & Behrens, M. M. (2013). How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptorantagonist model of schizophrenia. Antioxidants & Redox Signaling, 18(12),1444-1462. doi: 10.1089/ars.2012.4907
Weinberg, S. M., Jenkins, E. A., Marazita, M. L., & Maher, B. S. (2007). Minorphysical anomalies in schizophrenia: a meta-analysis. Schizophrenia Research,89(1-3), 72-85. doi: 10.1016/j.schres.2006.09.002
Wheeler, A. L., & Voineskos, A. N. (2014). A review of structural neuroimagingin schizophrenia: from connectivity to connectomics. Frontiers in HumanNeuroscience, 8, 653. doi: 10.3389/fnhum.2014.00653
White, R. S., & Siegel, S. J. (2016). Cellular and circuit models of increased restingstatenetwork gamma activity in schizophrenia. Neuroscience, 321, 66-76. doi:10.1016/j.neuroscience.2015.11.011
Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D.(2017). Common and distinct patterns of grey-matter volume alteration in majordepression and bipolar disorder: evidence from voxel-based meta-analysis.Molecular Psychiatry, 22(10), 1455-1463. doi: 10.1038/mp.2016.72
Wojtalik, J. A., Eack, S. M., Pollock, B. G., & Keshavan, M. S. (2012). Prefrontal graymatter morphology mediates the association between serum anticholinergicityand cognitive functioning in early course schizophrenia. Psychiatry Research,204(2-3), 61-67. doi: 10.1016/j.pscychresns.2012.04.014
Wu, Q., Tang, W., Luo, Z., Li, Y., Shu, Y., Yue, Z., Xiao, B., & Feng, L. (2017).DISC1 Regulates the Proliferation and Migration of Mouse Neural Stem/Progenitor Cells through Pax5, Sox2, Dll1 and Neurog2. Frontiers in CellularNeuroscience, 11, 261. doi: 10.3389/fncel.2017.00261
Xu, T., Chan, R. C., & Compton, M. T. (2011). Minor physical anomalies in patientswith schizophrenia, unaffected first-degree relatives, and healthy controls: ameta-analysis. PloS One, 6(9), e24129. doi; 10.1371/journal.pone.0024129