2021, Número 2
Sistemas para la detección de intrusiones en redes de datos de instituciones de salud
Idioma: Español
Referencias bibliográficas: 41
Paginas:
Archivo PDF: 548.29 Kb.
RESUMEN
El empleo de las tecnologías digitales en instituciones médicas permite mejorar la calidad en la prestación de servicios de salud. Sin embargo, su utilización incrementa las vulnerabilidades y los riesgos de seguridad en estas organizaciones. En la actualidad los sistemas digitales en el sector de la salud representan un objetivo atractivo para los ciberdelicuentes porque constituyen fuentes de información valiosa deficientemente protegida. El estudio de la literatura permitió identificar una carencia de investigaciones orientadas a elevar la seguridad en redes de datos de instituciones de salud. La presente investigación tiene como objetivo realizar una revisión bibliográfica sobre los principales Sistemas de Detección de Intrusiones de código abierto existentes en la actualidad para contribuir a fortalecer la seguridad en las redes de datos de estas organizaciones. Se identificó la superioridad de Snort y Suricata como herramientas de código abierto para la detección de intrusiones en redes de datos.REFERENCIAS (EN ESTE ARTÍCULO)
Ahmed M, Barkat A. False Data Injection Attacks in Healthcare. En: Data Mining. AusDM 2017. Communications in Computer and Information Science [Internet]. Singapore: Boo Y., Stirling D., Chi L., Liu L., Ong KL., Williams G. (eds), Springer, 2018 [citado 17 Nov 2020], 845, p. 192-202. Disponible en: https://doi.org/10.1007/978-981-13-0292-3_12
Bhuyan SS, Kabir U, Escareno JM, Ector K, Palakodeti S, Wyant D, et al. Transforming Healthcare Cybersecurity from Reactive to Proactive: Current Status and Future Recommendations. Journal of Medical Systems [Internet]. 2020 [citado 19 Nov 2020]; 44(98): 1-9. Disponible en: https://doi.org/10.1007/s10916-019-1507-y
Sánchez-Henarejos A.; Fernández-Alemán J. L.; Toval A.; Hernández-Hernández I.; Sánchez-García AB; Carrillo de Gea J.M. Guía de buenas prácticas de seguridad informática en el tratamiento de datos de salud para el personal sanitario en atención primaria. Atención Primaria [Internet]. 2014 [citado 15 Nov 2020]; 46(4):214-222. Disponible en: http://dx.doi.org/10.1016/j.aprim.2013.10.008
Guerrero J. Diseño e implementación de un sistema de monitoreo a la red de datos de entidad prestadora del servicio de salud [tesis de maestría]. Colombia: Universidad Nacional Abierta y a Distancia; 2020. [citado 16 Nov 2020]; 100 p. Disponible en: Disponible en: https://repository.unad.edu.co/handle/10596/34999
Mahamat S, Flauzac O, Nolot F, Rabat C, Gonzalez C. Secure Exchanges Activity in Function of Event Detection with the SDN. En: e-Infrastructure and e-Services for Developing Countries. AFRICOMM 2018, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering [Internet]. Dakar, Senegal: Mendy G., Ouya S., Dioum I., Thiaré O. (eds), Springer, 2019 [citado 17 Nov 2020], 275, p. 315-324. Disponible en: https://doi.org/10.1007/978-3-030-16042-5_28
Aludhilu H, Rodríguez-Puente RA. Systematic Literature Review on Intrusion Detection Approaches. Revista Cubana de Ciencias Informáticas [Internet]. 2020 [citado 20 Nov 2020]; 14(1): p. 58-78. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S2227-18992020000100058&lng=es&nrm=iso&tlng=en
Castellanos O, García M. Análisis y caracterización de conjuntos de datos para detección de intrusiones. Serie Científica de la Universidad de las Ciencias Informáticas [Internet]. 2020 [citado 16 Nov 2020]; 13(4): 39-52. Disponible en: Disponible en: https://publicaciones.uci.cu/index.php/serie/article/view/558
Wang X, Kordas A, Hu L, Gaedke M, Smith D. Administrative Evaluation of Intrusion Detection System. En: 2nd Annual Conference on Research in Information Technology [Internet]. Florida, USA: Association for Computing Machinery, 2013 [citado 17 Nov 2020], p. 47-52. Disponible en: https://doi.org/10.1145/2512209.2512216
Perdigón R, Ramírez R. Plataformas de software libre para la virtualización de servidores en pequeñas y medianas empresas cubanas. Revista Cubana de Ciencias Informáticas [Internet]. 2020 [citado 18 Nov 2020]; 14(1): 40-57. Disponible en: Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2227-18992020000100040&lng=es&nrm=iso&tlng=es
Macia-Fernández G, Camacho J, Magan-Carrión R, Fuentes-García M, García-Teodoro P. UGR’16: Un nuevo conjunto de datos para la evaluación de IDS de red. En: XIII Jornadas de Ingeniería Telemática [Internet]. Valencia, España: Editorial Universidad Politécnica de Valencia, 2017 [citado 18 Nov 2020], p. 71-78. Disponible en: http://dx.doi.org/10.4995/JITEL2017.2017.6520
Arteaga JE. Evaluación de las funcionalidades de los sistemas de detección de intrusos basados en la red de plataformas Open Source utilizando la técnica de detección de anomalías [tesis de maestría]. Ecuador: Escuela Superior Politécnica de Chimborazo; 2018. [citado 3 Nov 2020]; 162 p. Disponible en: Disponible en: http://dspace.espoch.edu.ec/handle/123456789/8748
Kumar D, Singh RA. Comprehensive Review on Intrusion Detection System and Techniques. En: International Conference on Contemporary Technological Solutions towards fulfilment of Social Needs [Internet]. India: SHODH SANGAM, 2018 [citado 21 Nov 2020]; p. 133-137. Disponible en: Disponible en: http://www.shodhsangam.rkdf.ac.in/papers/suvenir/133-137-Dharmendra.pdf
Divekar A, Parekh M, Savla V, Mishra R, Shirole M. Benchmarking datasets for Anomaly-based Network Intrusion Detection: KDD CUP 99 alternatives. En: 3rd International Conference on Computing, Communication and Security (ICCCS) [Internet]. Kathmandu, Nepal: IEEE, 2018 [citado 9 Nov 2020], p. 1-8. Disponible en: https://doi.org/10.1109/CCCS.2018.8586840
Ashok D, Manikrao V. Comparative Study and Analysis of Network Intrusion Detection Tools. En: International Conference on Applied and Theoretical Computing and Communication Technology [Internet]. Davangere, India: IEEE, 2015 [citado 9 Nov 2020], p. 312-315. Disponible en: https://doi.org/10.1109/ICATCCT.2015.7456901
Bouziani O, Benaboud H, Samir Chamkar A, Lazaar SA. Comparative study of Open Source IDSs according to their Ability to Detect Attacks. En: 2nd International Conference on Networking, Information Systems & Security [Internet]. Rabat, Marruecos: Association for Computing Machinery, 2019 [citado 21 Nov 2020]; p. 1-5. Disponible en: https://doi.org/10.1145/3320326.3320383
Alsakran F, Bendiab G, Shiaeles S, Kolokotronis N. (2020) Intrusion Detection Systems for Smart Home IoT Devices: Experimental Comparison Study. En: Security in Computing and Communications 2019 [Internet]. Singapore: Thampi S., Martinez Perez G., Ko R., Rawat D. (eds), Springer, 2020 [citado 21 Nov 2020]; 1208. Disponible en: https://doi.org/10.1007/978-981-15-4825-3_7
Interpol.int [página Web en Internet]. Cybercriminals targeting critical healthcare institutions with ransomware, 2020 < Cybercriminals targeting critical healthcare institutions with ransomware, 2020 https://www.interpol.int/News-and-Events/News/2020/Cybercriminals-targeting-critical-healthcare-institutions-with-ransomware > [consultado 18 Nov 2020].