2022, Número 2
<< Anterior Siguiente >>
An Med Asoc Med Hosp ABC 2022; 67 (2)
Nanomedicina y nanopartículas en una nueva era oncológica
Shveid GD, Shalkow KJ
Idioma: Ingles.
Referencias bibliográficas: 26
Paginas: 131-136
Archivo PDF: 235.54 Kb.
RESUMEN
El cáncer es un reto de la salud global. La nanotecnología y la nanomedicina, la síntesis y uso de materiales con dimensiones en escalas atómicas o moleculares (diámetros de ≤ 100 nm), se han utilizado cada vez más en la medicina y se consideran de gran importancia en cuanto a su capacidad de matar microorganismos o su papel en la transformación de células neoplásicas. Estas partículas exhiben características únicas debidas a su alta tasa de volumen a área de superficie con propiedades químicas y físicas únicas. En la investigación contemporánea se puede apreciar esta nueva tecnología para el diagnóstico de cáncer y su tratamiento. Estudios que involucran a las nanopartículas incluyen vehículos para administración directa de medicamentos, modulación de interacciones entre medicamentos y el sistema inmune, activación de blancos terapéuticos con mejor retención y recepción de drogas, nanopartículas que contienen agentes terapéuticos y de imagen que permiten la detección selectiva de células neoplásicas a través de técnicas de imagen en tiempo real hasta la detección de células neoplásicas mediante biopsia líquida dirigida por nanopartículas de exosomas. Sin duda, esta frontera en la oncología moderna requiere de una revisión que permita conocer nuevas herramientas en el diagnóstico y tratamiento de neoplasias.
REFERENCIAS (EN ESTE ARTÍCULO)
Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Niksic M, Bonaventure A et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 2018; 391 (10125): 1023-1075. Available in: https://doi.org/10.1016/S0140-6736(17)33326-3
Atun R, Bhakta N, Denburg A, Frazier AL, Friedrich P, Gupta S et al. Sustainable care for children with cancer: a lancet oncology commission. The Lancet Oncology. 2020; 21 (4): e185-e224. Available in: https://doi.org/10.1016/S1470-2045(20)30022-X
Cazarolli L, Zanatta L, Alberton E, Bonorino FMS, Folador P, Damazio R et al. Flavonoids: prospective drug candidates. Mini Rev Med Chem. 2008; 8 (13): 1429-1440. Available in: https://doi.org/10.2174/138955708786369564
Kinaret PAS, Del Giudice G, Greco D. Covid-19 acute responses and possible long term consequences: What nanotoxicology can teach us. Nano Today. 2020; 35: 100945. Available in: https://doi.org/10.1016/j.nantod.2020.100945v
Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A et al. Flavanones: citrus phytochemical with health-promoting properties. Biofactors. 2017; 43 (4): 495-506. Blackwell Publishing Inc. https://doi.org/10.1002/biof.1363
Gandhi GR, Neta MTSL, Sathiyabama RG, Quintans J de SS, de Oliveira e Silva AM, Araujo AAS et al. Flavonoids as Th1/Th2 cytokines immunomodulators: a systematic review of studies on animal models. Phytomedicine. 2018; 44: 74-84. Available in: https://doi.org/10.1016/j.phymed.2018.03.057
Hemila H, Chalker E. Vitamin C for preventing and treating the common cold. In Cochrane Database Systc Rev. 2013; 2013 (1): CD000980. Available in: https://doi.org/10.1002/14651858.CD000980.pub4
Lago JH, Toledo-Arruda AC, Mernak M, Barrosa KH, Martins MA, Tiberio IFLC. Structure-Activity association of flavonoids in lung diseases. Molecules. 2014; 19 (3): 3570-3595. Available in: https://doi.org/10.3390/molecules19033570
Lee ER, Kang GH, Cho SG. Effect of flavonoids on human health: old subjects but new challenges. Recent Pat Biotechnol. 2008; 1 (2): 139-150. Available in: https://doi.org/10.2174/187220807780809445
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014; 66: 2-25. Available in: https://doi.org/10.1016/j.addr.2013.11.009
Ebrahim SA, Ashtari A, Pedram MZ, Ebrahim NA, Sanati-Nezhad A. Publication trends in exosomes nanoparticles for cancer detection. Int J Nanomedicine. 2020; 15: 4453-4470. Available in: https://doi.org/10.2147/IJN.S247210
Ma Y, Li R, Dong Y, You C, Huang S, Li X et al. tLyP-1 peptide functionalized human H chain ferritin for targeted delivery of paclitaxel. Int J Nanomedicine. 2021; 16: 789-802. Available in: https://doi.org/10.2147/IJN.S289005
Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG et al. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J Control Release. 2014; 187: 133-144. Elsevier B.V. Available in: https://doi.org/10.1016/j.jconrel.2014.05.036
Stylianopoulos T, Jain RK. Design considerations for nanotherapeutics in oncology. Nanomedicine. 2015; 11 (8): 1893-1907. Elsevier Inc. Available in: https://doi.org/10.1016/j.nano.2015.07.015
Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. In Nanomedicine. 2007; 2 (5): 669-680. Available in: https://doi.org/10.2217/17435889.2.5.669
Li L, Yang WW, Xu DG. Stimuli-responsive nanoscale drug delivery systems for cancer therapy. J Drug Target. 2019; 27 (4): 423-433. Available in: https://doi.org/10.1080/1061186X.2018.1519029
Mannu R, Karthikeyan V, Velu N, Arumugam C, Roy VAL, Gopalan AI et al. Polyethylene glycol coated magnetic nanoparticles: Hybrid nanofluid formulation, properties and drug delivery prospects. Nanomaterials (Basel). 2021; 11 (2): 440. Available in: https://doi.org/10.3390/nano11020440
Popescu RC, Straticiuc M, Mustaciosu C, Temelie M, Trusca R, Vasile B et al. Enhanced internalization of nanoparticles following ionizing radiation leads to mitotic catastrophe in MG-63 human osteosarcoma cells. Int J Mol Sci. 2020; 21 (19): 7220. Available in: https://doi.org/10.3390/ijms21197220
Bai H, Wang J, Phan CU, Chen Q, Hu X, Shao G et al. Cyclodextrin-based host-guest complexes loaded with regorafenib for colorectal cancer treatment. Nature Communications. 2021; 12 (1). Available in: https://doi.org/10.1038/s41467-021-21071-0
Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomedicine. 2021; 16: 185-199. Available in: https://doi.org/10.2147/IJN.S286221
Liu X, Zhu X, Qi X, Meng X, Xu K. Co-administration of IRGD with Sorafenib-loaded iron-based metal-organic framework as a targeted Ferroptosis agent for liver cancer therapy. Int J Nanomedicine. 2021; 16: 1037-1050. Available in: https://doi.org/10.2147/IJN.S292528
Sears J, Swanner J, Fahrenholtz CD, Snyder C, Rohde M, Levi-Polyachenko N et al. Combined photothermal and ionizing radiation sensitization of triple-negative breast cancer using triangular silver nanoparticles. Int J Nanomedicine. 2021; 16: 851-865. Available in: https://doi.org/10.2147/IJN.S296513
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015; 93: 52-79. Elsevier B.V. Available in: https://doi.org/10.1016/j.ejpb.2015.03.018
Moore T, Chen H, Morrison R, Wang F, Anker JN, Alexis F. Nanotechnologies for noninvasive measurement of drug release. In Mol Pharm. 2014; 11 (1): 24-39. Available in: https://doi.org/10.1021/mp400419k
Mineo PG, Foti C, Vento F, Montesi M, Panseri S, Piperno A et al. Salinomycin-loaded PLA nanoparticles: drug quantification by GPC and wave voltammetry and biological studies on osteosarcoma cancer stem cells. Anal Bioanal Chem. 2020; 412 (19): 4681-4690. Available in: https://doi.org/10.1007/s00216-020-02721-6
Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): oxidative stress and the ceramide pathway are key players. Int J Nanomedicine. 2021; 16: 515-538. Available in: https://doi.org/10.2147/IJN.S291138
NIVEL DE EVIDENCIA
III