2022, Número 2
<< Anterior
Investigación en Discapacidad 2022; 8 (2)
La ingeniería de tejidos en la regeneración ósea
Ruvalcaba-Paredes EK, Brena-Molina A, Tamay DL, González-Torres M
Idioma: Ingles.
Referencias bibliográficas: 42
Paginas: 67-74
Archivo PDF: 215.12 Kb.
RESUMEN
El principal objetivo de la medicina regenerativa es reparar y reemplazar los tejidos dañados o perdidos, iniciando el proceso de regeneración natural y usando tecnologías como la ingeniería de tejidos, la cual requiere de un andamio, una fuente de células y factores de crecimiento, solos o combinados, para iniciar el proceso de regeneración de tejidos. Se han realizado diversas investigaciones para desarrollar andamios seguros y eficaces para el uso clínico, algunos de los biomateriales utilizados para la reconstrucción ósea son cerámicas, matriz ósea desmineralizada, metales y biopolímeros naturales o sintéticos. Las células son una parte integral en la estrategia de la ingeniería de tejidos, el aislamiento, la eficiencia de expansión, la estabilidad del fenotipo osteoblástico, la capacidad de formación ósea in vivo, así como la seguridad a largo plazo, son requisitos esenciales que deben ser cumplidos por cualquier tipo celular osteogénico, para el éxito de la aplicación clínica en los conceptos de ingeniería de tejidos. Los factores de crecimiento juegan un papel importante en la ingeniería de tejidos debido a que funcionan como moléculas de señalización. Ellos promueven o previenen la adhesión celular, proliferación, migración y diferenciación. En este artículo se mencionarán los elementos que utiliza la estrategia de ingeniería de tejidos para reparar y regenerar las lesiones óseas, así como sus aplicaciones en la clínica.
REFERENCIAS (EN ESTE ARTÍCULO)
Nicoll SB. Materials for bone graft substitutes and osseous tissue regeneration. In: Burdick JA, Mauck RL. Biomaterials for tissue engineering applications. Philadelphia, Pennsylvania, USA: Editorial Springer Wien New York; 2011. pp. 343-362.
Peric KZ, Rider P, Alkildani S et al. An introduction to bone tissue engineering. Int J Artif Organs. 2020; 43 (2): 69-86. doi: 10.1177/0391398819876286.
Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics. 2022; 14 (2): 306. doi: 10.3390/pharmaceutics14020306.
Borrelli MR, Hu MS, Longaker MT, Lorenz HP. Tissue engineering and regenerative medicine in craniofacial reconstruction and facial aesthetics. J Craniofac Surg. 2020; 31 (1): 15-27. doi: 10.1097/SCS. 0000000000005840.
Adamski R, Siuta D. Mechanical, structural, and biological properties of chitosan/hydroxyapatite/silica composites for bone tissue engineering. Molecules. 2021; 26 (7): 1976. doi: 10.3390/molecules26071976.
Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015; 4 (9): 1268-1285. doi: 10.1002/adhm.201400760.
Storti G, Scioli MG, Kim BS, Orlandi A, Cervelli V. Adipose-derived stem cells in bone tissue engineering: useful tools with new applications. Stem Cells Int. 2019; 2019: 3673857. doi: 10.1155/2019/3673857.
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied bioengineering in tissue reconstruction, replacement, and regeneration. Tissue Eng Part B Rev. 2019; 25 (4): 259-290. doi: 10.1089/ten.TEB.2018.0325.
Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018; 180: 143-162. doi: 10.1016/j.biomaterials.2018.07.017.
Jeyaraman M, Muthu S, Gangadaran P et al. Osteogenic and chondrogenic potential of periosteum-derived mesenchymal stromal cells: do they hold the key to the future? Pharmaceuticals (Basel). 2021; 14 (11): 1133. doi: 10.3390/ph14111133.
Polini A, Pisignano D, Parodi M, Quarto R, Scaglione S. Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS One. 2011; 6 (10): e26211. doi: 10.1371/journal.pone.0026211.
Thrivikraman G, Athirasala A, Twohig C, Boda SK, Bertassoni LE. Biomaterials for craniofacial bone regeneration. Dent Clin North Am. 2017; 61 (4): 835-856. doi: 10.1016/j.cden.2017.06.003.
Losee JE, Karmacharya J, Gannon FH et al. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh. J Craniofac Surg. 2003; 14 (1): 117-124. doi: 10.1097/00001665-200301000-00022.
Yang Y, Kang Y, Sen M, Park S. Bioceramics in tissue engineering. In: Burdick JA, Mauck RL. Biomaterials for tissue engineering applications. Philadelphia, Pennsylvania, USA: Editorial Springer Wien New York; 2011. pp. 343-362.
Zhang W, Yelick PC. Craniofacial Tissue Engineering. Cold Spring Harb Perspect Med. 2018;8(1):a025775. doi:10.1101/cshperspect.a025775.
Kang NH, Kim SJ, Song SH, Choi SM, Choi SY, Kim YJ. Hydroxyapatite synthesis using EDTA. J Craniofac Surg. 2013; 24 (3): 1042-1045. doi: 10.1097/SCS.0b013e318290258b.
Teven CM, Fisher S, Ameer GA, He TC, Reid RR. Biomimetic approaches to complex craniofacial defects. Ann Maxillofac Surg. 2015; 5 (1): 4-13. doi: 10.4103/2231-0746.161044.
Pou AM. Update on new biomaterials and their use in reconstructive surgery. Curr Opin Otolaryngol Head Neck Surg. 2003; 11 (4): 240-244. doi: 10.1097/00020840-200308000-00004.
Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO. Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev. 2012; 64 (12): 1063-1077. doi: 10.1016/j.addr.2012.06.008.
Holt DJ, Grainger DW. Demineralized bone matrix as a vehicle for delivering endogenous and exogenous therapeutics in bone repair. Adv Drug Deliv Rev. 2012; 64 (12): 1123-1128. doi: 10.1016/j.addr.2012.04.002.
Jayasuriya AC, Ebraheim NA. Evaluation of bone matrix and demineralized bone matrix incorporated PLGA matrices for bone repair. J Mater Sci Mater Med. 2009; 20: 1637-1644.
Gurevitch O, Kurkalli BG, Prigozhina T, Kasir J, Gaft A, Slavin S. Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells. 2003; 21 (5): 588-597. doi: 10.1634/stemcells.21-5-588.
Zhang S, Zhang X, Zhao C et al. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 2010; 6 (2): 626-640. doi: 10.1016/j.actbio.2009.06.028.
Pedrero SG, Llamas-Sillero P, Serrano-López J. A multidisciplinary journey towards bone tissue engineering. Materials (Basel). 2021; 14 (17): 4896. doi: 10.3390/ma14174896.
Zhang Z. Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med. 2011; 5 (4): 401-413. doi: 10.1007/s11684-011-0161-7.
Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A, Hwang YS. Stem cells in bone tissue engineering. Biomed Mater. 2010; 5 (6): 062001. doi: 10.1088/1748-6041/5/6/062001.
Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007; 327 (3): 449-462. doi: 10.1007/s00441-006-0308-z.
Brohem CA, de Carvalho CM, Radoski CL et al. Comparison between fibroblasts and mesenchymal stem cells derived from dermal and adipose tissue. Int J Cosmet Sci. 2013; 35 (5): 448-457. doi: 10.1111/ics.12064.
De Bari C, Dell'Accio F, Vanlauwe J et al. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006; 54 (4): 1209-1221. doi: 10.1002/art.21753.
Waese EY, Kandel RA, Stanford WL. Application of stem cells in bone repair. Skeletal Radiol. 2008; 37 (7): 601-608. doi: 10.1007/s00256-007-0438-8. Erratum in: Skeletal Radiol. 2008; 37 (7): 691. Kandel, Rita R [corrected to Kandel, Rita A].
Law S, Chaudhuri S. Review Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am J Stem Cell. 2013; 2 (1): 22-38.
Gelinsky M, Lode A, Bernhardt A, Rosen-Wolff A. Stem cell engineering for regeneration of bone tissue. Stem Cell Eng. 2011. doi: 10.1007/978-3-642-11865-4_17.
Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006; 24: 462-471. doi: 10.1634/células madre.2004-0331.
Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med. 2012; 1 (6): 480-491. doi: 10.5966/sctm.2011-0056.
Choi YS, Noh SE, Lim SM et al. Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett. 2008; 30 (4): 593-601. doi: 10.1007/s10529-007-9584-2.
Ball MD, Bonzani IC, Bovis MJ, Williams A, Stevens MM. Human periosteum is a source of cells for orthopaedic tissue engineering: a pilot study. Clin Orthop Relat Res. 2011; 469 (11): 3085-3093. doi: 10.1007/s11999-011-1895-x.
Honsawek S, Bumrungpanichthaworn P, Thitiset T, Wolfinbarger L Jr. Gene expression analysis of demineralized bone matrix-induced osteogenesis in human periosteal cells using cDNA array technology. Genet Mol Res. 2011; 10 (3): 2093-2103. doi: 10.4238/vol10-3gmr1329.
Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L et al. BMP9 signaling in stem cell differentiation and osteogenesis. Am J Stem Cells. 2013; 2 (1): 1-21.
Argintar E, Edwards S, Delahay J. Bone morphogenetic proteins in orthopaedic trauma surgery. Injury. 2011; 42 (8): 730-734. doi: 10.1016/j.injury.2010.11.016.
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med. 2008; 2 (2-3): 81-96. doi: 10.1002/term.74.
Logovskaya LV, Bukharova TB, Volkov AV, Vikhrova EB, Makhnach OV, Goldshtein DV. Induction of osteogenic differentiation of multipotent mesenchymal stromal cells from human adipose tissue. Bull Exp Biol Med. 2013; 155 (1): 145-150. doi: 10.1007/s10517-013-2100-x.
Metzger W, Schimmelpfennig L, Schwab B et al. Expansion and differentiation of human primary osteoblasts in two- and three-dimensional culture. Biotech Histochem. 2013; 88 (2): 86-102. doi: 10.3109/10520295.2012.741262.