2021, Número 1
<< Anterior Siguiente >>
Rev Cubana Hig Epidemiol 2021; 58 (1)
Vacunas de la infancia podrían estar contribuyendo a menor incidencia y severidad de COVID-19 en edades pediátricas
Fonte GL, Ginori GM, García MG
Idioma: Español
Referencias bibliográficas: 37
Paginas: 1-14
Archivo PDF: 650.81 Kb.
RESUMEN
A más de un año de que la pandemia de COVID-19 emergiera en la ciudad China de Wuhan, un hecho sigue llamando la atención de la comunidad científica enfrentada a esta virosis: la menor susceptibilidad de los niños a la infección por SARS CoV-2 y al desarrollo de cuadros severos de COVID-19. Un grupo de factores, no excluyentes, ha sido aludido para explicar la mayor resistencia de los menores a la virosis y a sus consecuencias clínicas. El objetivo de este trabajo es incursionar en un factor adicional, todavía poco abordado en la literatura médica relacionada con el tema: la resistencia inespecífica a SARS-CoV-2 que podría estar siendo generada por las vacunas administradas durante la infancia. Con esta incursión se pretende, además, aportar a una mejor comprensión del carácter relativamente benévolo de la virosis en los menores. El análisis realizado permite concluir que un grupo de las vacunas administradas durante esa etapa, la mayoría de las cuales forman parte del esquema de inmunización de los niños cubanos, se asocia a una menor incidencia y severidad de la infección por SARS CoV-2 en edades pediátricas.
REFERENCIAS (EN ESTE ARTÍCULO)
Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5. doi: https://doi.org/10.1016/j.ijid.2020.03.017
World Health Organization. Coronavirus press conference 11 February, 2020. Geneva: WHO; 2020 [acceso 14/03/2020]. Disponible en: Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMIkanE_YLh7gIVo-iGCh2rvABuEAAYASAAEgLF5fD_BwE
World Health Organization. WHO. Coronavirus disease 2019 (COVID-19): Weekly epidemiological update - 9 February 2021. Geneva: WHO; 2021 [acceso 10/02/2021]. Disponible en: Disponible en: https://www.who.int/publications/m/item/weekly-epidemiological-update---9-february-2021
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020 [acceso 04/08/2020];92:568-76. Disponible en: Disponible en: https://www.onlinelibrary.wiley.com/doi/full/10.1002/jmv.25748 .
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;20:269-70. doi: https://doi:10.1038/s41577-020-0308-3
Lee PI, Hu YL, Chen PY, Huang YC, Hsueh PR. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020;53(3):371-2. doi: 10.1016/j.jmii.2020.02.011
Carsetti R, Quintarelli C, Quinti I, Mortari E, Zumla A, Ippolito G, et al. The immune system of children: ¿the key to understanding SARS-CoV-2 susceptibility? Lancet Child Adolesc Health. 2020;4(6):414-6. doi: 10.1016/S2352-4642(20)30135-8.
Beric-Stojsic B, Kalabalik-Hoganson J, Rizzolo D, Roy S. Childhood Narrative Review. Front Public Health. 2020;8:587007. doi: https:// doi: 10.3389/fpubh.2020.587007
Ministerio de Salud Pública. Coronavirus en Cuba: Información oficial del Ministerio de Salud Pública. 12 Febrero, 2021. La Habana, Cuba: Minsap; 2021 [acceso 12/02/2021]. Disponible en: Disponible en: https://salud.msp.gob.cu/parte-de-cierre-del-dia-11-de-febrero-a-las-12-de-la-noche/
Zimmermann P, Curtis N. Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. 2020; 105:1-11. doi: https://doi.org/10.1136/archdischild-2020-320338
Ignjatovic V, Mertyn E, Monagle P. The coagulation system in children: developmental and pathophysiological considerations. Semin Thromb Hemost. 2011;37:723-9. doi: https://doi.org/10.1055/s-0031-1297162
Saheb Sharif-Askari N, Saheb Sharif-Askari F, Alabed M. Airways expression of SARS CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD. Mol Ther Meth Clin Dev. 2020;18:1-6. doi: https://doi.org/10.1016/j.omtm.2020.05.013
Gorse GJ, Donovan MM, Patel GB. Antibodies to coronaviruses are higher in older compared with younger adults and binding antibodies are more sensitive than neutralizing antibodies in identifying coronavirus‐associated illnesses. J Med Virol. 2020;92:512-7. doi: https://doi:10.1002/jmv.25715
Fulop T, Larbi A, Dupuis G, Page AL, Frost EH, Cohen AA, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Frontiers Immunol 2018;8:1960. doi: https://doi: 10.3389/fimmu.2017.01960
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-62. doi: https://doi:10.1016/S0140-6736(20)30566-3
Martín Giménez VM, Inserra F, Tajer CD, Mariani J, Ferder L, Reiter RJ, et al. Lungs as target of COVID-19 infection: protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci. 2020;254:117808. doi: https://doi: 10.1016/j.lfs.2020.117808
Posfay-Barbe KM, Wagner N, Gauthey M, Moussaoui D, Loevy N, Diana A, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics. 2020;146:e20201576. doi: https://doi: 10.1542/peds.2020-1576
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20:375-88. doi: https://doi: 10.1038/s41577-020-0285-6
Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin Microbiol Rev. 2018;31:e00111-7. doi: https://doi: 10.1128/CMR.00111-17
Fonte L, Acosta A, Sarmiento ME, Ginori M, García G, Norazmi MN. COVID 19 lethality in Sub-Saharan Africa and helminth immune modulation. Front Immunol 2020; 11:574910. doi: https://doi: 10.3389/fimmu.2020.574910
Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS CoV-2. Gastroenterology. 2020;158:1831-3. doi: https://doi: 10.1053/j.gastro.2020.02.055
López L, Egües L, Pérez A, Galindo B, Galindo MA, Resik S, et al. Experiencia cubana en inmunización, 1962-2016. Rev Panam Salud Publica. 2018;42:e34. doi: https://doi.org/10.26633/RPSP.2018.34
Mayr A. Taking advantage of the positive side-effects of smallpox vaccination. J Vet Med B Infect Dis Vet Public Health. 2004;51:199-201. doi: https://doi: 10.1111/j.1439-0450.2004.00763.x
Aaby P, Samb B, Simondon F, Seck AM, Knudsen K, Whittle H. Non-specific beneficial effect of measles immunization: analysis of mortality studies from developing countries. BMJ. 1995;311:481-5. doi: https://doi: 10.1136/bmj.311.7003.481
Benn C, Netea M, Selin L, Aaby P. A small jab - a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 2013;34:431-9. doi: https://doi: 10.1016/j.it.2013.04.004
Hon KLE, Leung CW, Cheng WTF, Chan PK, Chu WC, Kwan YW, et al. Clinical presentations and outcome of severe acute respiratory syndrome in children. Lancet. 2003;361:1701-3. doi: https://doi: 10.1016/s0140-6736(03)13364-8
Al-Tawfiq JA, Kattan RF, Memish ZA. Middle East respiratory syndrome coronavirus disease is rare in children: an update from Saudi Arabia. WJCP. 2016;5:391-6. doi: https://doi: 10.5409/wjcp.v5.i4.391
O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? Nat Rev Immunol. 2020;20:335-7. doi: https://doi.org/10.1038/s41577-020-0337-y
Miller A. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv. 2020. doi: https://doi.org/10.1101/2020.03.24.20042937
Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microb. 2018;23:89-100. doi: https://doi:10.1016/j.chom.2017.12.010
Nuovoa G, Tilib E, Susterc D, Matysa E, Huppa L, Magrod C. Strong homology between SARS-CoV-2 envelope protein and a Mycobacterium sp. antigen allows rapid diagnosis of Mycobacterial infections and may provide specific anti-SARS-CoV-2 immunity via the BCG vaccine. Ann Diagn Pathol. 2020;48:151600. doi: https://doi.org/10.1016/j.anndiagpath.2020.151600
Guiso N, Meade BD, Wirsing von König CH. Pertussis vaccines: The first hundred years. Vaccine. 2020;38:1271-6. doi: https://doi: 10.1016/j.vaccine.2019.1211.1022
Reche PA. Potential cross-reactive immunity to SARS-CoV-2 from common human pathogens and vaccines. Front Immunol. 2020;11:586984. doi: https://doi: 10.3389/fimmu.2020.586984
Saad M, Elsalamony R. Measles vaccines may provide partial protection against COVID-19. Int J Cancer Biomed Res. 2020;5:14-9. doi: https://doi: 10.21608/jcbr.2020.26765.1024
Zimmermann P, Perrett KP, van der Klis FR, Curtis N. The immunomodulatory effects of measles-mumps-rubella vaccination on persistence of heterologous vaccine responses. Immunol Cell Biol. 2019;97:577-85. doi: https://doi.org/10.1111/imcb.12246
Wu D, Guo CY. Epidemiology and prevention of hepatitis A in travelers. J Travel Med. 2013;20:394-9. doi: https://doi: 10.1111/jtm.12058
Sarialioglu F, Apak FBB, Haberal M. Can hepatitis A vaccine provide protection against COVID-19? Exp Clin Transpl. 2020;2:141-3. doi: https://doi: 10.6002/ect.2020.0109