2022, Número S3
<< Anterior Siguiente >>
Cardiovasc Metab Sci 2022; 33 (S3)
Entender la hipertensión arterial: avances fisiopatológicos
Cardona-Müller D, Cardona-Muñoz EG
Idioma: Inglés [English version]
Referencias bibliográficas: 18
Paginas: s211-215
Archivo PDF: 180.33 Kb.
RESUMEN
La hipertensión arterial (HTA) se ha identificado como uno de los principales factores de riesgo de eventos cardiovasculares como el ictus y el infarto de miocardio. Para entender la fisiopatología de la hipertensión arterial y otras enfermedades que afectan al sistema cardiovascular, es necesario comprender cómo se producen. En este artículo se analizan los elementos fisiopatológicos que conducen a la HTA, incluida una discusión sobre la rigidez arterial, así como los componentes biofísicos y hemodinámicos que conducen al mantenimiento y al aumento de los niveles de presión arterial sistémica en los adultos. También se analizan los componentes humorales que regulan la presión arterial y que, cuando están desregulados, desempeñan un papel fundamental en la fisiopatología de la HTA.
REFERENCIAS (EN ESTE ARTÍCULO)
Jordan J, Kurschat C, Reuter H. Arterial hypertension. Dtsch Arztebl Int. 2018; 115: 557-568. Available in: https://doi.org/10.3238/arztebl.2018.0557.
Koenigsberger M, Sauser R, Bény JL, Meister JJ. Effects of arterial wall stress on vasomotion. Biophys J 2006; 91: 1663-1674. Available in: https://doi.org/10.1529/biophysj.106.083311.
Attinger EO, Attinger FM. Frequency dynamics of peripheral vascular blood flow. Annu Rev Biophys Bioeng. 1973; 2: 7-36. Available in: https://doi.org/10.1146/annurev.bb.02.060173.000255.
Mitchell GF. Arterial stiffness and wave reflection in hypertension: pathophysiologic and therapeutic implications. Curr Hypertens Rep 2004; 6: 436-441. Available in: https://doi.org/10.1007/s11906-004-0037-1.
Maldonado J, Pereira T, Polónia J, Silva JA, Morais J, Marques M et al. Arterial stiffness predicts cardiovascular outcome in a low-to-moderate cardiovascular risk population: the EDIVA (Estudo de DIstensibilidade VAscular) project. J Hypertens. 2011; 29: 669-675. Available in: https://doi.org/10.1097/HJH.0b013e3283432063.
Sehestedt T, Jeppesen J, Hansen TW, Wachtell K, Ibsen H, Torp-Pedersen C et al. Risk prediction is improved by adding markers of subclinical organ damage to SCORE. Eur Heart J. 2010; 31: 883-891. Available in: https://doi.org/10.1093/eurheartj/ehp546.
Azushima K, Morisawa N, Tamura K, Nishiyama A. Recent research advances in renin-angiotensin-aldosterone system receptors. Curr Hypertens Rep. 2020; 22: 22. Available in: https://doi.org/10.1007/s11906-020-1028-6.
Alcocer L, Álvarez-López H, Borrayo-Sánchez G, Cardona-Muñoz EG, Chávez-Mendoza A, Díaz ED et al. Hypertension as a persistent public health problem. A position paper from Alliance for a Healthy Heart, Mexico. Ann Clin Hypertens. 2019; 3: 9-30. Available in: https://doi.org/10.29328/journal.ach.1001015.
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother Biomedecine Pharmacother. 2017; 94: 317-325. Available in: https://doi.org/10.1016/j.biopha.2017.07.091.
Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol. 2019; 316: H958-H970. Available in: https://doi.org/10.1152/ajpheart.00723.2018.
Dikalov SI, Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal. 2013; 19: 1085-1094. Available in: https://doi.org/10.1089/ars.2012.4604.
Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020; 30: 367-369. Available in: https://doi.org/10.1038/s41422-020-0327-4.
Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 2020; 116: 1666-1687. Available in: https://doi.org/10.1093/cvr/cvaa106.
Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63: 364-374. Available in: https://doi.org/10.1007/s11427-020-1643-8.
Ravichandran B, Grimm D, Krüger M, Kopp S, Infanger M, Wehland M. SARS-CoV-2 and hypertension. Physiol Rep. 2021; 9: e14800. Available in: https://doi.org/10.14814/phy2.14800.
Chen G, Li X, Gong Z, Xia H, Wang Y, Wang X et al. Hypertension as a sequela in patients of SARS-CoV-2 infection. PloS One. 2021; 16: e0250815. Available in: https://doi.org/10.1371/journal.pone.0250815.
Cohen JB. Hypertension in obesity and the impact of weight loss. Curr Cardiol Rep. 2017; 19: 98. Available in: https://doi.org/10.1007/s11886-017-0912-4.
Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J. 2005; 149: 33-45. Available in: https://doi.org/10.1016/j.ahj.2004.07.013.