2020, Número 1
Siguiente >>
Biotecnol Apl 2020; 37 (1)
Estudio de preformulación de una vacuna pentavalente de DPT-HB-Hib cubana, Heberpenta®-L
Expósito-Raya NS, Prieto-Correa YC, Izquierdo-López M, Nuñez-Lamothe Z, Piloto-Díaz S, Martínez-Cuellar Y, Torres-Toledo M, Pereira-Sanabria A, López-Edghill R, Marcelo-Sainz JL, Rodriguez-Arrebato A, Denis-Cruz MA, Alderete-Avalos Y, Chacon-Molina A, Martínez-Díaz E
Idioma: Ingles.
Referencias bibliográficas: 37
Paginas: 1201-1209
Archivo PDF: 391.46 Kb.
RESUMEN
El desarrollo de vacunas combinadas es un proyecto muy útil por todas las ventajas que ofrece este tipo de vacuna, sin embargo, no está exento de complejidades en su ejecución debido a sus desafíos tecnológicos. En Cuba se desarrolló satisfactoriamente una vacuna pentavalente (DPT-HB-Hib), bajo la marca Heberpenta®, que contiene cinco antígenos: anatoxina diftérica y tetánica, células enteras de Bordetella pertussis, antígeno de superficie recombinante del virus de la hepatitis B y el polisacárido sintético (polirribosil ribitol fosfato, PRP) de Haemophilus influenzae conjugado con anatoxina tetánica (PRP-T). Se realizó un estudio previo a la formulación utilizando una mezcla de adyuvantes que definen el tiempo de absorción óptimo para cada antígeno. Se formularon tres lotes a escala piloto con la tecnología definida y se estudiaron utilizando diferentes pruebas físico-químicas y biológicas. La tecnología para la formulación de la vacuna pentavalente producida en Cuba se definió de acuerdo con estos resultados, que luego deben someterse a estabilidad, estudios no clínicos y clínicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Skibinski DAG, Baudner BC, Singh M, O’Hagan DT. Combination vaccines. J Global Infect Dis. 2011;3(1):63-72.
Marshall GS, Happe LE, Lunacsek OE, Szymanski MD, Woods CR, Zahn M, et al. Use of combination vaccines is associated with improved coverage rates. Pediatr Infect Dis J. 2007;26:496-500.
Kalies H, Grote V, Verstraeten T, Hessel L, Schmitt HJ, von Kries R. The use of combination vaccines has improved timeliness of vaccination in children. Pediatr Infect Dis J. 2006;25:507-12.
Weston WM, Klein NP. Kinrix: A new combination DTaPIPV vaccine for children aged 46 years. Expert Rev Vaccines. 2008;7:1309-20.
Bogaerts H. The future of childhood immunizations: Examining the European experience. Am J Manag Care. 2003;9:S30-6.
Petre J, Hauser P, inventors; Glaxo- SmithKline Biologicals S.A., assignee. Combined vaccines comprising hepatitis B surface antigens and other vaccines. EP 0835663B1. 1993 May 15.
Jones LTS, Peek LJ, Power J, Markham A, Yazzie B, Middaugh CR. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J Biol Chem. 2005;280(14):13406- 14.
Matheis W, Zott A, Schwanig M. The role of the adsorption process for production and control combined adsorbed vaccines. Vaccine. 2001;20(1-2):67-73.
Ramon G. Floculation dans un élange neutre de toxin-antitoxine diphtériques. CR Soc Biol. 1922;86:6.
World Health Organization. Manual for the Production and Control of Vaccines: Tetanus Toxoid. Geneva: WHO; 1978.
González-Griego A, Alerm A, Vega I, Ramírez V, Salgado A, Vingut JL. Cuantificación del antígeno de superficie del VHB (HBsAg) en muestras biológicas con fines asistenciales y preparativos. Biotecnol Apl. 1993;10(2):10.
British Pharmacopoeia. London: Her Majesty’s Stationery Office; 2004.
United States Pharmacopoeia 30. National Formulary 25. United States Pharmacopoeia Convention; Inc.: Rockville, MD; 2007.
PPO 4.09.064.92. Determinación de la concentración de ión aluminio por Complejometría. La Habana: CIGB; 1999.
CIGB. PPO 4.09.062.92. Espectrofotometría método utilizado por el fabricante (CIGB) para la cuantificación de Tiomersal en las vacunas monovalentes y combinadas. La Habana: CIGB; 1992.
BioCen. PNO 07.154, Determinación de la toxicidad específica de las anatoxinas diftérica y tetánica en la vacuna pentavalente DPT-HB-Hib, Heberpenta-L. La Habana: BioCen; 2009.
BioCen. PNO 07.155, Determinación de la toxicidad específica de la Bordetella pertussis en la vacuna pentavalente DPT-HB-Hib, Heberpenta-L. La Habana: BioCen; 2009.
González P, Martínez S, Ramírez JC, Domínguez F, Díaz Y, Ramírez U, et al. Vacuna antidiftérica-tetánica y antidiftéricatetánica- pertussis: evaluación del producto final. VacciMonitor. 1999;8(2):8-12.
CIGB. PPO.4.09.093.04. Procedimiento para la determinación de la identidad del AgsHB utilizando el sistema ELISA en vacunas. La Habana: CIGB; 2013.
CIGB. PPO.4.09.041.03. Procedimiento para la determinación de la identidad del PRP-T utilizando el método de inmunoidentificación por Latex en vacunas. La Habana: CIGB; 2008.
Fitzgerald EA. Overview of the methods for potency testing of diphtheria and tetanus toxoids in the United States. In: Manclark CR (ed). Proceedings of an Informal Consultation on the World Health Organization Requirements for Diphtheria, Tetanus, Pertussis and Combined Vaccines. Department of Health and Human Services, United States Public Health Service. Bethesda, MD, DHHS Publication No. (FDA) 91-1174; 1991. pp 61-4.
Finney D J. Probit Analysis. 3rd edition. New York: Cambridge University Press; 1971.
World Health Organization. Manual of laboratory methods for testing of vaccines used in the WHO Expanded Programme on Inmunization. Global programme for vaccines and inmunization. Vaccine supply and quality. Assay for testing the potency of whole cell pertussis vaccines in monovalent or combined form. Geneva: WHO; 1997.
CIGB. PPO 4.09.060.92. Edición 09. Procedimiento establecido para la determinación de la potencia in vivo de la vacuna la hepatitis B recombinante y vacunas combinadas que contengan como componente activo el AgsHB. La Habana: CIGB; 2008.
CIGB. PPO 4.09.037.03. Procedimiento para la determinación de la inmunogenicidad del componente PRP-T en vacunas. La Habana: CIGB; 2013.
Baylor NW, Egan W, Richman P. Aluminum salts in vaccines--US perspective. Vaccine. 2002; 20 Suppl 3:S18-23.
Kool M, Fierens K, Lambrecht BN. Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol. 2012;61:927-34.
Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of aluminium and calcium compounds. In: Powell MF, Newman MJ, editors. Vaccine design: the subunit and adjuvant approach. New York: Plenum Press; 1995. p. 229-48.
Walls RS. Eosinophil response to alum adjuvants: Involvement of T cells in nonantigen- dependent mechanisms. Proc Soc Exp Biol Med. 1977;156:431-5.
Rappuoli R. New and improved vaccines against diphteria and tetanus. In: Woodrow GC, Levine MM. (eds), New Generation Vaccines. New York: Marcel Dekker; 1990. pp. 251.
Latham WC, Bent DF, Levine L. Tetanus toxin production in the absence of protein. Appl Environ Microbiol. 1962;10(2): 146-52.
Organización Mundial de la Salud. Guía de la OMS sobre los requisitos de las prácticas adecuadas de fabricación (PAF). Segunda parte: Validación. WHO/ VSQ/97.02. Geneva: OMS; 1998.
Liu J, Feldkamp JL, White JL, Hem SL. Adsorption of phosphate by aluminum hydroxycarbonate. J Pharm Sci. 1984;73:1355-8.
Bleam WF, Pfeffer PE, Goldberg S, Taylor RW, Dudley RA. 31p solid-state nuclear magnetic resonance study of phosphate adsorption at the boehmite/aqueous solution interface. Langmuir. 1991;7:1702-12.
Iyer S, Robinett RS, HogenEsch H, Hem SL. Mechanism of adsorption of hepatitis B surface antigen by aluminum hydroxide adjuvant. Vaccine. 2004;22:1475-9.
Sturgess AW, Rush K, Charbonneau RJ, Lee JI, West DJ, Sitrin RD, et al. Haemophilus influenzae type b conjugate vaccine stability: catalytic depolymerisation of PRP in the presence of aluminium hydroxide. Vaccine, 1999;17(9-10):1169-78.
Gilchrist M Jr. Bordetella. In: Balows A, Hausler WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds). Manual of clinical microbiology, 5th ed. Washington DC: American Society for Microbiology; 1991. pp. 471-7.