2022, Número 1
<< Anterior
Investigación en Discapacidad 2022; 8 (1)
El papel de los RNAs no-codificantes en la patogénesis de la distrofia miotónica tipo 1
Murillo-Melo NM, Borbolla-Jiménez FV, Hernández-Hernández O, J MJ
Idioma: Ingles.
Referencias bibliográficas: 62
Paginas: 29-38
Archivo PDF: 239.12 Kb.
RESUMEN
La distrofia miotónica tipo 1 (DM1) es la distrofia muscular más común en adultos con una prevalencia de 1/8,000 a nivel mundial. La DM1 es un trastorno multisistémico con una patofisiología compleja. El procesamiento alternativo es el mecanismo con el mayor impacto en la patogénesis y el más estudiado actualmente. Sin embargo, se ha descrito que otros mecanismos como desregulación de RNAs no-codificantes (ncRNAs) contribuyen a la patogénesis. Los ncRNAs, particularmente miRNAs, participan en el desarrollo, diferenciación y regeneración del tejido muscular en DM1. El potencial papel de algunos miRNAs como biomarcadores de DM1 ha sido revelado a partir de estudios con suero de pacientes. Estudios más recientes describieron la presencia de RNA antisentido, ahora clasificados como lncRNA, con un potencial papel en la formación de siRNAs, modificador de la cromatina y mecanismos de traducción RAN. No obstante, lncRNAs no han sido descritos en DM1 y, por lo tanto, podría ser interesante la investigación del papel que juegan en esta enfermedad. Parece que ncRNAs juegan un papel importante en DM1, adicionando nuevos elementos a los mecanismos descritos previamente, lo cual mejora nuestro entendimiento de esta enfermedad compleja, dejando mucho aún por descubrir.
REFERENCIAS (EN ESTE ARTÍCULO)
Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet. 2005; 6 (10): 729-742.
de León MB, Cisneros B. Myotonic dystrophy 1 in the nervous system: from the clinic to molecular mechanisms. J Neurosci Res. 2008; 86 (1): 18-26.
Udd B, Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012; 11 (10): 891-905.
Day JW, Ranum LP. RNA pathogenesis of the myotonic dystrophies. Neuromuscul Disord. 2005; 15 (1): 5-16. doi: 10.1016/j.nmd.2004.09.012.
Cho DH, Tapscott SJ. Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta. 2007; 1772 (2): 195-204. doi: 10.1016/j.bbadis.2006.05.013.
Magaña JJ, Leyva-García N, Cisneros B. Pathogenesis of myotonic dystrophy type 1. Gac Med Mex. 2009; 145 (4): 331-337.
Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet. 2006; 15 (13): 2087-2097. doi: 10.1093/hmg/ddl132.
Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell. 2002; 10 (1): 35-44.
Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA, Donohue JP et al. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy. Nat Struct Mol Biol. 2010; 17 (2): 187-193. doi: 10.1038/nsmb.1720.
Batra R, Charizanis K, Manchanda M, Mohan A, Li M, Finn DJ et al. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease. Mol Cell. 2014; 56 (2): 311-322. doi: 10.1016/j.molcel.2014.08.027.
Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K, Fernández Gómez FJ et al. MBNL sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain. Cell Rep. 2015; 12 (7): 1159-1168. doi: 10.1016/j.celrep.2015.07.029.
Kalsotra A, Singh RK, Gurha P, Ward AJ, Creighton CJ, Cooper TA. The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 2014; 6 (2): 336-345. doi: 10.1016/j.celrep.2013.12.025.
Fernández-Costa JM, Garcia-Lopez A, Zuñiga S, Fernandez-Pedrosa V, Felipo-Benavent A, Mata M et al. Expanded CTG repeats trigger miRNA alterations in Drosophila that are conserved in myotonic dystrophy type 1 patients. Hum Mol Genet. 2013; 22 (4): 704-716. doi: 10.1093/hmg/dds478.
Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer MC, Jost B et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol. 2011; 18 (7): 840-845. doi: 10.1038/nsmb.2067.
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 2006; 38 (7): 758-769. doi: 10.1038/ng1827.
Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell. 2005; 20 (3): 483-489. doi: 10.1016/j.molcel.2005.09.002.
Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L, Timchenko LT. Overexpression of CUG triplet repeat-binding protein, CUGBP1, in mice inhibits myogenesis. J Biol Chem. 2004; 279 (13): 13129-13139. doi: 10.1074/jbc.M312923200.
Gudde AEEG, van Heeringen SJ, de Oude AI, van Kessel IDG, Estabrook J, Wang ET et al. Antisense transcription of the myotonic dystrophy locus yields low-abundant RNAs with and without (CAG)n repeat. RNA Biol. 2017; 14 (10): 1374-1388. doi: 10.1080/15476286.2017.1279787.
Perfetti A, Greco S, Bugiardini E, Cardani R, Gaia P, Gaetano C et al. Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscul Disord. 2014; 24 (6): 509-515.
Perbellini R, Greco S, Sarra-Ferraris G, Cardani R, Capogrossi MC, Meola G, et al. Dysregulation and cellular mislocalization of specific miRNAs in myotonic dystrophy type 1. Neuromuscul Disord. 2011; 21 (2): 81-88
Furling D. Misregulation of alternative splicing and microRNA processing in DM1 pathogenesis. Rinsho Shinkeigaku. 2012; 52 (11): 1018-1022.
Fritegotto C, Ferrati C, Pegoraro V, Angelini C. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1. Neurol Sci. 2017; 38 (4): 619-625.
Koutsoulidou A, Kyriakides TC, Papadimas GK, Christou Y, Kararizou E, Papanicolaou EZ et al. Elevated muscle-specific miRNAs in serum of myotonic dystrophy patients relate to muscle disease progress. PLoS One. 2015; 10 (4): e0125341.
Sicot G, Gourdon G, Gomes-Pereira M. Myotonic dystrophy, when simple repeats reveal complex pathogenic entities: new findings and future challenges. Hum Mol Genet. 2011; 20 (R2): R116-R123.
Chen Y, Zhou J. LncRNAs: macromolecules with big roles in neurobiology and neurological diseases. Metab Brain Dis. 2017; 32 (2): 281-291. doi: 10.1007/s11011-017-9965-8.
muscle dystrophies. Int J Mol Sci. 2013; 14 (10): 19681-19704. doi: 10.3390/ijms141019681.
Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017; 37 (1): 3-9. doi: 10.3892/or.2016.5236.
Qiu L, Tan EK, Zeng L. microRNAs and neurodegenerative diseases. Adv Exp Med Biol. 2015; 888: 85-105. doi: 10.1007/978-3-319-22671-2_6.
Maxmen A. RNA: The genome's rising stars. Nature. 2013; 496 (7443): 127-129.
Wang XQ, Crutchley JL, Dostie J. Shaping the genome with non-coding RNAs. Curr Genomics. 2011; 12 (5): 307-321.
Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009; 136 (4): 629-641.
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136 (2): 215-233.
Eisenberg I, Alexander MS, Kunkel LM. miRNAS in normal and diseased skeletal muscle. J Cell Mol Med. 2009; 13 (1): 2-11.
Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009; 23 (10): 3335-3346.
Pegoraro V, Cudia P, Baba A, Angelini C. MyomiRNAs and myostatin as physical rehabilitation biomarkers for myotonic dystrophy. Neurol Sci. 2020; 41 (10): 2953-2960.
Castanon I, Von Stetina S, Kass J, Baylies MK. Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development. 2001; 128 (16): 3145-2159.
Koutalianos D, Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Phylactou LA. MyoD transcription factor induces myogenesis by inhibiting Twist-1 through miR-206. J Cell Sci. 2015; 128 (19): 3631-3645.
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008; 456 (7224): 980-984.
Perfetti A, Greco S, Cardani R, Fossati B, Cuomo G, Valaperta R et al. Validation of plasma microRNAs as biomarkers for myotonic dystrophy type 1. Sci Rep. 2016; 6: 38174.
Fernández-Costa JM, Llamusi B, Bargiela A, Zulaica M, Alvarez-Abril MC, Perez-Alonso M et al. Six serum miRNAs fail to validate as myotonic dystrophy type 1 biomarkers. PLoS One. 2016; 11 (2): e0150501.
Cerro-Herreros E, Fernandez-Costa JM, Sabater-Arcis M, Llamusi B, Artero R. Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila. Sci Rep. 2016; 6: 36230.
Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña J et al. Transcriptome analysis reveals altered inflammatory pathway in an inducible glial cell model of myotonic dystrophy type 1. Biomolecules. 2021; 11 (2): 159.
Cappella M, Perfetti A, Cardinali B, Garcia-Manteiga JM, Carrara M, Provenzano C et al. High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2. Cell Death Dis. 2018; 9 (7): 729.
Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009; 284 (4): 1971-1981.
Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport. 2007; 18 (3): 297-300.
Martí E, Pantano L, Bañez-Coronel M, Llorens F, Miñones-Moyano E, Porta S et al. A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. Nucleic Acids Res. 2010; 38 (20): 7219-7235.
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL. The bifunctional microRNA miR-9/miR-91 regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci. 2008; 28 (53): 14341-14346.
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011; 12 (12): 861-874.
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011; 21 (6): 354-361.
Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep. 2015; 5: 13186.
Gudde AE, González-Barriga A, van den Broek WJ, Wieringa B, Wansink DG. A low absolute number of expanded transcripts is involved in myotonic dystrophy type 1 manifestation in muscle. Hum Mol Genet. 2016; 25 (8): 1648-1662.
Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009; 457 (7228): 413-420.
Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009; 457 (7228): 405-412.
Morris KV, Chan SW, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science. 2004; 305 (5688): 1289-1292.
Yu Z, Teng X, Bonini NM. Triplet repeat-derived siRNAs enhance RNA-mediated toxicity in a Drosophila model for myotonic dystrophy. PLoS Genet. 2011; 7 (3): e1001340.
Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016; 17 (4): 205-211.
Xiao MS, Ai Y, Wilusz JE. Biogenesis and Functions of circular RNAs come into focus. Trends Cell Biol. 2020; 30 (3): 226-2240.
Czubak K, Sedehizadeh S, Kozlowski P, Wojciechowska M. An overview of circular RNAs and their implications in myotonic dystrophy. Int J Mol Sci. 2019; 20 (18): 4385.
Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska K, Philips A et al. Global increase in circular RNA levels in myotonic dystrophy. Front Genet. 2019; 10: 649.
Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna LV, Longo M et al. Dysregulation of circular RNAs in myotonic dystrophy type 1. Int J Mol Sci. 2019; 20 (8): 1938.
Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E, Angelini C et al. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med. 2010; 8: 48.
Greco S, Perfetti A, Fasanaro P, Cardani R, Capogrossi MC, Meola G et al. Deregulated microRNAs in myotonic dystrophy type 2. PLoS One. 2012; 7 (6): e39732.