2021, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Bioencapsulado de Fischerella sp.: crecimiento, metabolismo y concentración del inóculo
Alonso-Santos E, Trujillo-Tapia MN, Cervantes-Hernández P, Ramírez-Fuentes E
Idioma: Español
Referencias bibliográficas: 43
Paginas:
Archivo PDF: 294.58 Kb.
RESUMEN
La inmovilización de microorganismos y su aprovechamiento en la agricultura como biofertilizantes o para biocontrol,
es un tópico en desarrollo, y también un aspecto importante a considerar en la concentración es el inóculo para
bioencapsularlos sin afectar el crecimiento y producción de sus metabolitos. Las células de
Fischerella sp. fueron
encapsuladas con alginato de calcio empleando diferentes porcentajes de inóculo (1, 5, 10 y 20%), determinando el peso
seco (PS), concentración del NH
4+ y ficobiliproteínas en la biomasa. El crecimiento y metabolismo de
Fischerella sp.
fue mayor en el bioencapsulado vs células libres, al incrementarse 2.8 veces más el valor del PS y el NH
4+ del género
en estudio. En la concentración del inóculo (20%) el valor del PS fue de 0.032 µg mL
-1, y estadísticamente presentó
diferencias significativas. A diferencia de las células libres, el bioencapsulado protege a las células del estrés biótico y
abiótico, manteniendo la actividad metabólica y viabilidad por periodos de tiempo más largos. El bioencapsulado de
Fischerella sp. para la producción de NH
4+ y su uso como biofertilizante en la agricultura, es una alternativa
vs el uso
de fertilizantes químicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Andersen, R. A. & Kawachi, M. (2005). Traditional microalgae isolation techniques. In: Andersen, R. A. (Ed). Algal Culturing Techniques. (pp. 83-100). Elsevier Academic Press. E.U.
APHA-AWA-WPCF (1992). Standard methods for the examination of water and wastewater. 18th edition. American Public Health Association. Washington, D. C., USA.
Arredondo-Vega, B., Cordero-Esquivel, B. & Voltolina, D. (2017). Determinación de proteínas por métodos espectrofotométricos. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. Centro de Investigaciones Biológicas del Noroeste. 2da Ed. Capítulo
31- 34 pp. 4. Bashan, Y. (1986). Alginate beds as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Applied Environmental Microbiology, 51, 1089-1098. DOI: 10.1128/ aem.51.5.1089-1098.1986
Bashan, Y. & González, L. E. (1999). Long-term survival of the plant-growth promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Applied Microbiology and Biotechnology, 51, 262-266. https://doi.org/10.1007/s002530051391
Bashan, Y., Salazar B. & Puente, M. E. (2009). Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biology and Fertility of Soils, 45, 655-662. DOI:10.1007/s00374-009-0368-9
Brouers, M. & Hall, D. O. (1986). Ammonia and hydrogen production by immobilized cyanobacteria. Journal of Biotechnology, 3, 307-321. https://doi.org/10.1016/0168- 1656(86)90012-X
Cortez, S., Nicolau, A., Flickinger, M. C. & Mota, M. (2017). Biocoatings: A new challenge for environmental biotecnology. Biochemical Engineering Journal, 121, 25-37. DOI.org/10.1016/j.bej.2017.01.004
Converti, A., Lodi, A., Del Borghi, A. & Solisio, C. (2006). Cultivation of Spirulina platensis in a combined airlifttubular reactor system. Biochemical Engineering Journal, 32, 13–18. DOI:10.1016/j.bej.2006.08.013
De-Bashan, L. E. & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology, 101, 1611-1627. DOI: 10.1016/j. biortech.2009.09. 043.
Duboís, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analysis of Chemistry, 26, 215–225.
Gumbo, R., Ross, G. & Cloete, E. (2008). Biological control of Microcystis dominated harmful algal blooms. African Journal of Biotechnology, 7, 4765-4773. DOI: 10.5897/ AJB08.038
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Stanley, J. T. & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology. Williams and Wilkins. USA.
Kovac, D., Babic, O., Milovanovic, I., Misan, A. & Simeunovic, J. (2017). The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources. Applied Biochemistry and Microbiology, 53(5), 539-545. DOI:10.1134/S000368381705009X
Miransari, M. (2010). Biological fertilization. In: Current Research and Education Topics in Applied Microbiology and Microbial Biotechnology (Méndez-Villa, A., Ed). 168-176 pp.
Noreña-Caro, D. & Benton, M. G. (2018). Cyanobacteria as photoautotrophic biofactories of high-values chemicals. Journal of CO2 Utilization, 28, 335-366. https://doi. org/10.1016/j.jcou.2018.10.008
Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A. & Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnology Advances, 37, 422-443. DOI: 10.1016/j.biotechadv.2019.02.010
Prasanna, R., Jaiswal, P. & Kaushik, B. D. (2008). Cyanobacteria as potential options for environmental sustainabilitypromises and challenges. Indian Journal of Microbiology, 48, 89-94. DOI: 10.1007/s12088-008-0009-2
Rai, L. C. & Mallick, N. (1992). Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World Journal of Microbiology and Biotechnology, 8, 110-114. DOI: 10.1007/BF01195827.
Rathore, S., Desai, P.M., Liew, C.V., Chan, L.W. & Heng, P.W.S. (2013). Microencapsulation of microbial cells: Review. Journal of Food Engineering, 116, 369-381. https://doi. org/10.1016/j.jfoodeng.2012.12.022
Rekha, P. D., Lai, W. A., Arun, A. B. & Young, C. C. (2007). Effect of free and encapsulated Pseudomonas putida CC FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresource Technology, 98, 447-451. DOI: 10.1016/j.biortech.2006.01.009
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.
Ruíz-Marín, A., Mendoza-Espinosa, L.G. & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101, 58-64. DOI: 10.1016/j.biortech.2009.02.076.
Russo, A., Basaglia, M., Tola, E. & Casella, S. (2001). Survival, root colonization and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. Journal of Industrial Microbiology and Biotechnology, 27, 337-342. DOI: 10.1038/sj.jim.7000154
Santos-Rosa, F., Galván, F. & Vega, J. M. (1989). Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: A reactor feasibility study. Applied Microbiology and Biotechnology, 32, 285–290. https://doi.org/10.1007/BF00184975
Schoebitz, M., López, D. M. & Roldan, A. (2013). Bioencapsulation of microbial inoculants for better soilplant fertilization. A review. Agronomy for Sustainable Development, 33, 751-765. DOI 10.1007/s13593-013- 0142-0
Siegelman, H. W. & Kycia, J. H. (1978). Algal biliproteins. In Hellebust, J. A. & Craigie, J. S. Handbook of phycological methods. Physiological and biochemical methods. (pp. 71- 79). Cambridge university press, Cambridge.
Singh, J. S., Pandey, V. C. & Singh, D. P. (2011). Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agriculture, Ecosystems & Environment, 140, 339-353. https://doi. org/10.1016/j.agee.2011.01.017
Sukenik, A., Carmeli, Y. & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochforopsis sp. Journal of Phycology, 25, 686-692. DOI: 10.1186/2045-3701-4-38
Syiem, M. B. (2005). Entrapped cyanobacteria: Implications for biotechnology. Indian Journal of Biotechnology, 4, 209-215.
Tam, N. F.Y. & Wong, Y. S. (2000). Effect of immobilized microalgal bead concentration on wastewater nutrient removal. Environmental Pollution, 107(1), 145-151. https:// doi.org/10.1016/S0269-7491(99)00118-9
Taikhao, S. & Phunpruch, S. (2017). Increasing Hydrogen Production Efficiency of N2-Fixing Cyanobacterium Anabaena siamensis TISTR 8012 by Cell Immobilization. Energy Procedia, 138, 366-371. https://doi.org/10.1016/j. egypro.2017.10.170
Trejo, A., de-Bashan, L. E., Hartmann, A., Hernandez, J. P., Rothballer, M., Schmid, M. & Bashan, Y. (2012). Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ and Experimental Botany, 75, 65-73. DOI:10.1016/j. envexpbot.2011.08.007
Trivedi, P. & Pandey, A. (2008). Recovery of plant growthpromoting rhizobacteria from sodium alginate beads after 3 years following storage at 4 degrees C. Journal of Industrial Microbiology and Biotechnology, 35(3), 205- 209. DOI:10.1007/s10295-007-0284-7
Trujillo-Roldán, M. A. & Valdez-Cruz, N. A. (2006). El estrés hidrodinámico: Muerte y daño celular en cultivos agitados. Revista Latinoamericana de Microbiología, 48 (3-4),269-280
Trujillo-Tapia, Ma. N. & Ramírez-Fuentes, E. (2016). Biofertilizer: an alternative to reduce chemical fertilizer in agriculture. Journal of Global Agriculture and Ecology, 4(2), 99-103. DOI:10.13140/RG.2.1.4935.4967
Ugwu, C. U., Aoyagi, H. & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99, 4021-4028. DOI: 10.1016/j.biortech.2007.01.046
Van Elsas, J. D., Trevors, J. T., Jain, D., Wolters, A. C., Heijnen, C. E. & van Overbeek, L. S. (1992). Survival of, and root colonization by, alginate-encapsulated Pseudomonas- cells following introduction into soil. Biology and Fertility of Soils, 14, 14-22. https://doi.org/10.1007/BF00336297
Vemmer, M. & Patel, A.V. (2013). Review of encapsulation methods suitable for microbial biological control agents. Biological Control, 67, 380-389. https://doi.org/10.1016/j. biocontrol.2013.09.003
Vroman, I. & Tighzert, L. (2009). Biodegradable Polymers. Biodegradability of Materials, 2, 307-344. https://doi. org/10.3390/ma2020307
Wang, Ch. & Lan, Ch. Q. (2018). Effects of shear stress on microalgae – A review. Biotechnology Advances, 36, 986- 1002. DOI: 10.1016/j.biotechadv.2018.03.001
Yabur, R., Bashan, Y. & Hernández-Carmona, G. (2007). Alginate from the macroalgae Sargasum sinicola as novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology, 19, 43-53. https://doi.org/10.1007/s10811- 006-9109-8
Young, C. C., Rekha, P. D., Lai, W. A. & Arun, A. B. (2006). Encapsulation of plant growth-promoting bacteria in alginate beads enriched with humic acid. Biotechnology and Bioengineering, 95, 76-83. DOI: 10.1002/bit.20957