2021, Número 4
<< Anterior
Cardiovasc Metab Sci 2021; 32 (4)
Análisis deductivo del electrocardiograma para definir el sitio de origen de las extrasístoles ventriculares
Asensio-Lafuente E, Álvarez-de CJ, Sánchez-Guevara E, Solache-Ortiz G, Rodríguez-Reyes H, Lara-Vaca S
Idioma: Inglés [English version]
Referencias bibliográficas: 42
Paginas: 214-225
Archivo PDF: 780.64 Kb.
RESUMEN
Las extrasístoles ventriculares se han convertido en objeto de tratamiento, especialmente si la carga de arritmia es mayor al 10% de los latidos en un día. Conocer el sitio de origen de las mismas permite optimizar la planeación de las estrategias de tratamiento, especialmente las invasivas. El análisis deductivo del electrocardiograma (ECG) es una forma racional de analizar los vectores de activación y las morfologías de las extrasístoles, gracias a la cual se puede definir de manera bastante precisa el foco de origen de la arritmia. Conocer la posición de las estructuras cardiacas en el tórax y en el propio corazón, así como las relaciones entre ellas, facilita la comprensión de los vectores y morfologías de los complejos en el ECG de doce derivadas y es una información valiosa para completar el panorama clínico del enfermo. En este trabajo se presentan las principales formas de analizar el ECG de las extrasístoles ventriculares a partir de los conceptos clásicos y se incluyen parámetros de diagnóstico para definir su origen.
REFERENCIAS (EN ESTE ARTÍCULO)
Hastrup J, Goette A, Dobreanu D, Marinskis G, Mabo P, Blomstrom-Lundqvist C. Outpatient evaluation and management of patients with ventricular premature beats and non-sustained ventricular tachycardia. Europace. 2012; 14: 294-296.
Bastiaenen R, Batcharov V, Gallagher M. Ventricular automaticity as a predictor of death in ischaemic heart disease. Europace. 2012; 14: 795-803.
Torp C, Kay N, Kalman J, Borgreffe M, Della-Bella P, Dickfeld T et al. EHRA/HRS/APHRS Expert consensus on ventricular arrhythmias. Europace. 2014; 16: 1257-1283.
Priori S, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borgreffe M, Camm J et al. 2015 Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2015; 36 (41): 2793-2867. doi: 10.1093/eurheartj/ehv316.
Marcus G. Evaluation and management of premature ventricular complexes. Circulation. 2020; 141: 1404-1418.
Al-Khatib S, Stevenson W, Ackerman M, Bryant W, Callans D, Curtiss A et al. 2017 AHA/ACC/HRS Guideline for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Heart Rhythm. 2018; 15 (10): E190-252.
Lewis S, Kanakis C, Rosen K, Denes P. Significance of the site of origin of ventricular premature contractions. Am Heart J. 1979; 97 (2): 159-164.
Xu W, Li M, Chen M, Yang B, Wang D, Kong W et al. Effect of burden and origin sites of premature ventricular contractions on left ventricular function by 7 day Holter monitor. J Biomed Res. 2015; 29 (6): 465-474.
Labadet C. Las extrasístoles ventriculares contraatacan. Rev Argent Cardiol. 2015; 83 (6): 552-554.
Luebbert J, Auberson D, Marchlinski F. Premature ventricular complexes in apparently normal hearts. Card Electrophysiol Clin. 2016; 8 (39): 503-514.
Ip J, Lerman B. Idiopathic malignant premature ventricular contractions. Trends Cardiovasc Med. 2018; 28 (4): 295-302.
Lin C, Chang S, Lin Y, Lo L, Chung F, Chen Y et al. Long term outcome of multiform premature ventricular complexes in structurally normal heart. Int J Cardiol. 2015; 1: 180-185.
Lee V, Hemingway H, Harb R, Crake T, Lambiase P. The prognostic significance of premature ventricular complexes in adults without clinically apparent heart disease: a meta-analysis and systematic review. Heart. 2012; 98 (17): 1290-1298.
Boas R, Thune J, Pehrson S, Kober L, Nielsen J, Videbaek L. Prevalence and prognostic association of ventricular arrhythmia in non-ischemic heart failure patients: results from the DANISH trial. Europace. 2021; 23 (4): 587-595.
Josephson M, Callans D. Using the twelve-lead electrocardiogram to localize the site of origin of ventricular tachycardia. Heart Rhythm. 2005; 2 (4): 443-446.
Sodi Pallares D, Medrano G, Bisteni A, Ponce de León J. Electrocardiografía clínica. Análisis deductivo. México: Ediciones del Instituto Nacional de Cardiología de México; 1968.
Yamada T. Twelve-lead electrocardiographic localization of idiopathic premature ventricular contraction origin. J Cardiovasc Electrophysiol. 2019; 30 (11): 2603-2617.
Tzeis S, ASvestas D, Yen Ho S, Vardas P. Electrocardiographic landmarks of idiopathic ventricular arrhythmia origins. Heart. 2019; 105 (14): 1109-1116.
Oebel S, Dinov B, Arya A, Hilbert S, Sommer P, Bollmann A et al. ECG morphology of premature ventricular contractions predicts the presence of myocardial fibrotic substrate on cardiac magnetic resonance imaging in patients undergoing ablation. J Cardiovasc Electrophysiol. 2017; 28 (11): 1316-1323.
Asirvatham S. Correlative anatomy for the invasive electrophysiologist: outflow tract and supravalvular arrhythmia. J Cardiovasc Electrophysiol, 2009; 20: 955-968.
Prystowsky E, Padanilam B, Joshi S, Fogel R. Ventricular arrhythmias in the absence of structural heart disease. J Am Coll Cardiol. 2012; 20: 1733-1744.
Al'Aref S, Ip J, Markowitz S, Liu C, Thomas G, Frenkel D et al. Differentiation of papillary muscle from fascicular and mitral annular ventricular arrhythmias in patients with and without structural heart disease. Circ Arrhythm Electrophysiol. 2015; 8: 616-624.
Wissner E, Stevensoon W, Kuck K, Catheter ablation of ventricular tachycardia in ischaemic and non-ischaemic cardiomyopathy, where are we today? A clinical review. Eur Heart J. 2012; 33 (12): 1440-1450.
Fernández J, Berruezo A. How to recognize epicardial origin of ventricular tachycardias? Curr Cardiol Reviews. 2014; 10: 246-256.
Enríquez A, Baranchuk A, Briceno D, Sáenz LC, García F. How to use the 12-lead ECG to predict the site of origin of idiopathic ventricular arrhythmias. Heart Rhythm. 2019; 16: 1538-1544.
Anderson R, Kumar S, Ramathan P, Wong G, Voskoboinik A, Sugumar H et al. Differentiating right and left-sided outflow tract ventricular arrhythmias. Classical ECG signatures and prediction algorithms. Circ Arrhyth, Electrophysiol. 2019; 12: e007392. doi: 10.1161/CIRCEP.119.007392.
Ouyang F, Matthew S, Wu S, Kamioka M, Metzner A, Xue Y et al. Ventricular arrhythmias arising from the left ventricular outflow tract below the aortic sinus cusps: Mapping and catheter ablation via transseptal approach and electrocardiographic characteristics. Circ Arrhythm Electrophysiol. 2104; 7: 445-455.
Ouyang F, Fotuhi P, Ho S, Hebe J, Volkmer M, Goya M et al. Repetitive monomorphic ventricular tachycardia originating from the aortic cusp: electrocardiographic characterization for guiding catheter ablation. J Am Coll Cardiol. 2002; 39: 500-508.
Kumagai K, Fukuda K, Wakayama Y, Sugai Y, Hirose M, Yamagucho N et al. Electrocardiographic characteristics of the variants of idiopathic left ventricular outflow tract ventricular tachyarrhythmias. J Cardiovasc Electrophisiol. 2008; 19: 495-501. doi: 10.1111/j.1540-8167.2007.01085.x.
Santos H, Valente B, Cunha P, Portugal G, Ferreira R, Oliveira M. The aortomitral continuity challenge. Ann Clin Case Rep. 2020; 5: 1890.
Chen J, Hoff P, Rossvoll O, De Bortoli A, Solheim E, Sun L et al. Ventricular arrhythmias originating from the aortomitral continuity: An uncommon variant of the left ventricular outflow tract ventricular tachycardia. Europace. 2012; 14 (3): 388-395.
Yamada T, McElderry H, Doppalapudi H, Okada Y, Murakami Y, Yoshida Y et al. Idiopathic ventricular arrhythmias originating from the left ventricular Summit: Anatomic concepts relevant to ablation. Circ Arrhythm Electrophysiol. 2010; 3: 616-623.
Enriquez A, Malavassi F, Sáenz L, Supple G, Santangeli P, Marchlinski F et al. How to map and ablate left ventricular summit arrhythmias. Heart Rhythm. 2017; 14 (1): 141-148.
Liao H, Wei W, Tanager K, Miele F, Upadhyay G, Beaser A et al. Left summit arrhythmias with an abrupt V3 transition: anatomy of the aortic interleaflet triangle vantage point. Heart Rhythm. 2021; 18 (1): 10-19.
Hayashi T, Santangeli P, Pathak R, Muser D, Liang J, Castro S et al. Outcomes of catheter ablation of idiopathic outflow tract ventricular arrhythmias with an R wave pattern break in lead V2: A distinct clinical entity. J Cardiovasc Electrophysiol. 2017; 28 (5): 504-514.
Barber M, Chinitz J, John R. Arrhythmias from the right ventricular moderator band: diagnosis and management. Arrhythm Electrophysiol Rev. 2020; 8 (4): 294-299.
Sadek M, Benhayon D, Suredd R, Idiopathic ventricular arrhythmias originating from the moderator band. Electrocardiographic characteristics and treatment by catheter ablation. Heart Rhythm. 2015; 12: 67-75.
Komatsu Y, Nogami A, Kurosaki K, Morishima I, Masuda K et al. Fascicular ventricular tachycardia originating from papilary muscles. Purkinje network involvement in the reentrant circuit. Circ Arrhythm Electrophysiol 2016. 2016; 10: e004549. doi: 10.1161/CIRCEP.116.004549.
Enríquez A, Supple G, Marchlinski F, García F. How to map and ablate papillary muscle arrhythmias. Heart Rhythm. 2017; 14 (11): 1721-1728.
Good E, Desjardins B, Jongnarangsin K, Oral H, Chugh A, Ebinger M, Ventricular arrhythmias originating from a papillary muscle in patients without prior infarction: a comparison with fascicular arrhythmias. Heart Rhythm. 2008; 5: 1530-1537.
Kautzner J, Peichl P. Papilary muscle ventricular tachycardia or ectopy: Diagnostic, catheter ablation and the role of intracardiac echocardiography. Arrhythm Electrophysiol Rev. 2019; 8 (1): 65-69.
Al'Aref S, Ip J, Markowitz S, Liu C, Thomas G, Frenkel D et al. Differentiation of papillary muscle from fascicular and mitral annular ventricular arrhythmias in patients with and without structural heart disease. Circ Arrhythm Electrophysiol. 2015; 8: 616-624.